Publication

Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure

Clément Hongler
2022
Article
Résumé

Critical statistical mechanics and Conformal Field Theory (CFT) are conjecturally connected since the seminal work of Beliavin et al. (Nucl Phys B 241(2):333-380, 1984). Both exhibit exactly solvable structures in two dimensions. A long-standing question (Itoyama and Thacker in Phys Rev Lett 58:1395-1398, 1987) concerns whether there is a direct link between these structures, that is, whether the Virasoro algebra representations of CFT, the distinctive feature of CFT in two dimensions, can be found within lattice models of statistical mechanics. We give a positive answer to this question for the discrete Gaussian free field and for the Ising model, by connecting the structures of discrete complex analysis in the lattice models with the Virasoro symmetry that is expected to describe their scaling limits. This allows for a tight connection of a number of objects from the lattice model world and the field theory one. In particular, our results link the CFT local fields with lattice local fields introduced in Gheissari et al. (Commun Math Phys 367(3):771-833, 2019) and the probabilistic formulation of the lattice model with the continuum correlation functions. Our construction is a decisive step towards establishing the conjectured correspondence between the correlation functions of the CFT fields and those of the lattice local fields. In particular, together with the upcoming (Chelkak et al. in preparation), our construction will complete the picture initiated in Hongler and Smirnov (Acta Math 211:191-225, 2013), Hongler (Conformal invariance of ising model correlations, 2012) and Chelkak et al. (Annals Math 181(3):1087-1138, 2015), where a number of conjectures relating specific Ising lattice fields and CFT correlations were proven.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Two-dimensional conformal field theory
A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.
Théorie conforme des champs
Une théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Théorie de Liouville
In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if and its classical limit is Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.
Afficher plus
Publications associées (88)

Flux correlators and semiclassics

Riccardo Rattazzi, Alexander Monin, Eren Clément Firat, Matthew Thomas Walters

We consider correlators for the flux of energy and charge in the background of operators with large global U(1) charge in conformal field theory (CFT). It has recently been shown that the corresponding Euclidean correlators generically admit a semiclassica ...
Springer2024

Bootstrapping smooth conformal defects in Chern-Simons-matter theories

Barak Gabai, Amit Sever

The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...
New York2024

Null energy constraints on two-dimensional RG flows

Grégoire Olivier Mathys

We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.