Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Herein we report a multi-zone, heating, ventilation and air-conditioning (HVAC) control case study of an industrial plant responsible for cooling a hospital surgery center. The adopted approach to guaranteeing thermal comfort and reducing electrical energy consumption is based on a statistical non-parametric, non-linear regression technique named Gaussian processes. Our study aimed at assessing the suitability of the aforementioned technique to learning the building dynamics and yielding models for our model predictive control (MPC) scheme. Experimental results gathered while the building was under regular use showcase the final controller performance while subject to a number of measured and unmeasured disturbances. Finally, we provide readers with practical details and recommendations on how to manage the computational complexity of the on-line optimization problem and obtain high-quality solutions from solvers. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Giancarlo Ferrari Trecate, Danilo Saccani, Melanie Nicole Zeilinger
Vassily Hatzimanikatis, Georgios Fengos, Tuure Eelis Hameri
David Atienza Alonso, Tomas Teijeiro Campo, Una Pale