Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Highway networkIn machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous artificial neural networks. It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by Long Short-Term Memory (LSTM) recurrent neural networks. The advantage of a Highway Network over the common deep neural networks is that it solves or partially prevents the vanishing gradient problem, thus leading to easier to optimize neural networks.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Framework WebUn framework Web ou framework d'application Web est un framework logiciel conçu pour prendre en charge le développement d'applications Web, notamment des services Web, des ressources Web et des API Web. Les frameworks Web fournissent un moyen standard de créer et de déployer des applications Web sur le World Wide Web. Les frameworks Web visent à automatiser les mécanismes les plus courants du développement Web.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Architecturevignette|upright=1.2|La cathédrale Saint-Pierre de Beauvais, , toute en pierre de taille, est l’exemple le plus aérien et dématérialisé de l'architecture gothique qui atteint là ses limites techniques. vignette|upright=1.2|La coupole du Panthéon, construit dans l'Antiquité romaine au début du , est restée de loin la plus large coupole du monde durant de nombreux siècles. Elle ne sera égalée qu'au par le dôme de la cathédrale de Florence qui marque de ce fait le début de la Renaissance, pour n'être dépassée qu'à partir du par les dômes contemporains.
Perceptron multicoucheEn intelligence artificielle, plus précisément en apprentissage automatique, le perceptron multicouche (multilayer perceptron MLP en anglais) est un type de réseau neuronal artificiel organisé en plusieurs couches. Un perceptron multicouche possède au moins trois couches : une couche d'entrée, au moins une couche cachée, et une couche de sortie. Chaque couche est constituée d'un nombre (potentiellement différent) de neurones. L'information circule de la couche d'entrée vers la couche de sortie uniquement : il s'agit donc d'un réseau à propagation directe (feedforward).
Architecture logicielleL’architecture logicielle décrit d’une manière symbolique et schématique les différents éléments d’un ou de plusieurs systèmes informatiques, leurs interrelations et leurs interactions. Contrairement aux spécifications produites par l’analyse fonctionnelle, le modèle d'architecture, produit lors de la phase de conception, ne décrit pas ce que doit réaliser un système informatique mais plutôt comment il doit être conçu de manière à répondre aux spécifications. L’analyse décrit le « quoi faire » alors que l’architecture décrit le « comment le faire ».
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Architecture cognitiveUne architecture cognitive est un processus calculatoire artificiel qui tente de simuler le comportement d'un système cognitif (généralement celui d'un humain), ou qui agit intelligemment sous respect d'une certaine définition. Le terme architecture implique une approche qui tente de modéliser les propriétés internes du système cognitif représenté et non seulement le comportement extérieur. Les prochaines sous-sections présentent plusieurs critères pour catégoriser les architectures cognitives.