Introducing Productive Engagement for Social Robots Supporting Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper presents a microrobot concept for microhandling and micromanipulation, which has been developed within the framework of the EU founded project MiCRoN. The concept is explained along with some examples of realized modules for the robots and a num ...
Therapeutic and educational applications of robots have created a demand for robots showing a number of social skills. These skills include the capacity to imitate, to learn from demonstration, to interpret gestures and to recognize speech. Robot toys are ...
Mobility in an effective and socially-compliant manner is an essential yet challenging task for robots operating in crowded spaces. Recent works have shown the power of deep reinforcement learning techniques to learn socially cooperative policies. However, ...
The project "Hands-On Mechatronics" aims to develop a problem-based learning environment for mechatronics. This environment is based on four specific aspects: a mobile robot competition as motivation factor, a WEB environment as framework for all student, ...
We describe a new experimental approach whereby an indoor flying robot evolves the ability to navigate in a textured room using only visual information and neuromorphic control. The architecture of a spiking neural circuit, which is connected to the vision ...
In this paper we describe the evolution of a discrete-time recurrent neural network to control a real mobile robot. In all our experiments the evolutionary procedure is carried out entirely on the physical robot without human intervention. We show that the ...