Ressource du World Wide Webalt=Logo Resource Description Framework RDF|vignette|217x217px|Logo Resource Description Framework RDF Une ressource du World Wide Web est un élément constitutif de base de l'architecture du World Wide Web. C'est la traduction littérale du mot anglais resource, dont le sens est à peu près aussi général que celui du mot français. Le terme a désigné d'abord le référent d'une URL, typiquement une page web. Cette définition a par la suite été généralisée à tous les référents des URI (), et plus récemment des IRI ().
Neuro-informatiqueLa neuro-informatique est un champ de recherche visant à l'organisation des données des neurosciences par l'application de modèles informatiques et d'outils analytiques. Ces domaines de recherche sont importants pour l'intégration et l'analyse d’un nombre croissant de données expérimentales tant par le volume que par la complexité et la précision. Les bioinformaticiens fournissent des outils informatiques, des modèles mathématiques, et créent des bases de données interopérables pour les cliniciens et les chercheurs.
Modèles du neurone biologiquevignette|390x390px|Fig. 1. Dendrites, soma et axone myélinisé, avec un flux de signal des entrées aux dendrites aux sorties aux bornes des axones. Le signal est une courte impulsion électrique appelée potentiel d'action ou impulsion. vignette|Figure 2. Évolution du potentiel postsynaptique lors d'une impulsion. L'amplitude et la forme exacte de la tension peut varier selon la technique expérimentale utilisée pour acquérir le signal.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Cerebellar model articulation controllerThe cerebellar model arithmetic computer (CMAC) is a type of neural network based on a model of the mammalian cerebellum. It is also known as the cerebellar model articulation controller. It is a type of associative memory. The CMAC was first proposed as a function modeler for robotic controllers by James Albus in 1975 (hence the name), but has been extensively used in reinforcement learning and also as for automated classification in the machine learning community. The CMAC is an extension of the perceptron model.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Visualisation de donnéesvignette|upright=2|Carte figurative des pertes successives en hommes de l'armée française dans la campagne de Russie 1812-1813, par Charles Minard, 1869. La visualisation des données (ou dataviz ou représentation graphique de données) est un ensemble de méthodes permettant de résumer de manière graphique des données statistiques qualitatives et surtout quantitatives afin de montrer les liens entre des ensembles de ces données. Cette fait partie de la science des données.
Cloud computingLe cloud computing , en français l'informatique en nuage (ou encore l'infonuagique au Canada), est la pratique consistant à utiliser des serveurs informatiques à distance et hébergés sur internet pour stocker, gérer et traiter des données, plutôt qu'un serveur local ou un ordinateur personnel. Les principaux services proposés en cloud computing sont le SaaS (Software as a Service), le PaaS (Platform as a Service) et le IaaS (Infrastructure as a Service) ou le MBaaS ().
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.