Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) aims to improve constraints on the dark energy equation of state through measurements of large-scale structure at high redshift (0.8 < z < 2.5), while serving as a state-of-the-art fast radio burst detector. Bright galactic foregrounds contaminate the 400-800 MHz HIRAX frequency band, so meeting the science goals will require precise instrument characterization. In this paper we describe characterization of the HIRAX antenna, focusing on measurements of the antenna beam and antenna noise temperature. Beam measurements of the current HIRAX antenna design were performed in an anechoic chamber and compared to simulations. We report measurement techniques and results, which find a broad and symmetric antenna beam for nu 700MHz. Noise temperature measurements of the HIRAX feeds were performed in a custom apparatus built at Yale. In this system, identical loads, one cryogenic and the other at room temperature, are used to take a differential (Y-factor) measurement from which the noise of the system is inferred. Several measurement sets have been conducted using the system, involving CHIME feeds as well as four of the HIRAX active feeds. These measurements give the first noise temperature measurements of the HIRAX feed, revealing a similar to 60K noise temperature (relative to 30K target) with 40K peak- to-peak frequency-dependent features, and provide the first demonstration of feed repeatability. Both findings inform current and future feed designs.
, , , ,