Le facteur de bruit (noise figure ou noise factor en anglais) d'un dispositif électronique quelconque, actif ou passif, quantifie la dégradation relative du rapport signal sur bruit entre sa sortie et son entrée, et ce en prenant comme hypothèse que la température ambiante est de , donc que le bruit de fond en entrée est un bruit thermique correspondant à cette température de référence de . Autrement dit, le facteur de bruit est défini comme le quotient des rapports signal sur bruit en entrée et en sortie de ce même dispositif quand le bruit en entrée est un bruit thermique à la température normalisée To=.
Le facteur de bruit est généralement noté F.
En particulier, dans le cas d'un récepteur radioélectrique supposé linéaire, on compare la puissance de bruit à la sortie à celle que l'on aurait s'il n'y avait dans ce récepteur aucune source de bruit autre que celles qui existent dans l'impédance extérieure connectée à l'entrée, supposées à une température spécifiée, habituellement . Il s'agit donc d'une mesure de performance du récepteur.
Le facteur de bruit d'un quadripôle quantifie la dégradation relative du rapport signal sur bruit qu'il apporte quand le bruit en entrée est un bruit thermique à la température normalisée To=, bruit que l'on note habituellement No. Le facteur de bruit est donné par :
où est le rapport signal sur bruit (Signal to Noise ratio).
Si, comme c'est fréquemment le cas, les rapports signal sur bruit sont exprimés en décibels, le quotient F prend alors la forme d'une différence de valeurs en dB.
Le facteur de bruit exprimé en dB est appelé Noise Figure en anglais, et noté NF.
La puissance du bruit thermique No en entrée est donnée par la formule de Boltzmann : No=k.To.B où B est la bande passante du dispositif considéré, k la constante de Boltzmann et To=. Comme le bruit thermique est considéré comme blanc aux fréquences usuelles, sa densité spectrale de puissance est k.To.
La densité spectrale de puissance du bruit thermique en entrée d'un récepteur chargé par une résistance à la température de est de /.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
En électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Un amplificateur faible bruit (LNA de l'anglais Low Noise Amplifier) ou un amplificateur à faible facteur de bruit est un dispositif électronique chargé de mettre en forme des signaux très faibles en provenance d'une antenne. Il est souvent placé à proximité du capteur, de manière à minimiser les pertes en ligne ; pour cette raison, il est parfois nommé préamplificateur. Ce type de solution est fréquemment utilisé pour les systèmes travaillant à des fréquences élevées, tels que le signal GPS et en radiocommunications.
In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters.
Couvre le modèle Jaynes-Cummings, le régime dispersif de la cavité QED, l'atome passant par la cavité, et des exemples liés à la naissance, la vie et la mort d'un photon.
We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...
2024
, ,
Path-following control is a critical technology for autonomous vehicles. However, time-varying parameters, parametric uncertainties, external disturbances, and complicated environments significantly challenge autonomous driving. We propose an iterative rob ...
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preservi ...