Positive-definite kernelIn operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Kernel smootherA kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average. Let be a kernel defined by where: is the Euclidean norm is a parameter (kernel radius) D(t) is typically a positive real valued function, whose value is decreasing (or not increasing) for the increasing distance between the X and X0.
Density estimationIn statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as a random sample from that population. A variety of approaches to density estimation are used, including Parzen windows and a range of data clustering techniques, including vector quantization.
Diviser pour régner (informatique)thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
Théorie des graphes extrémauxEn théorie des graphes, un graphe extrémal (anglais : extremal graph) par rapport à une propriété est un graphe tel que l'ajout de n'importe quelle arête amène le graphe à vérifier la propriété . L'étude des graphes extrémaux se décompose en deux sujets : la recherche de bornes inférieures sur le nombre d'arêtes nécessaires à assurer la propriété (voire sur d'autres paramètres comme le degré minimum) et la caractérisation des graphes extrémaux proprement dits. L'étude des graphes extrémaux est une branche de l'étude combinatoire des graphes.
CommunicationLa communication est l'ensemble des interactions avec un tiers humain ou animal qui véhiculent une ou plusieurs informations. En dehors de la communication animale, on distingue chez l'être humain, la communication interpersonnelle, la communication de groupe et la communication de masse, c'est-à-dire de l'ensemble des moyens et techniques permettant la diffusion du message d'une organisation sociale auprès d'une large audience. Plusieurs disciplines emploient la notion de communication sans s'accorder sur une définition commune.
Union-findthumb|Partition avec 8 classes (qui sont des singletons) obtenue avec MakeSet(1), ..., MakeSet(8).|255x255px thumb|Partition avec 3 classes disjointes obtenue après Union(1, 2), Union(3, 4), Union(2, 5), Union(1, 6) et Union(2, 8).|255x255px En informatique, union-find est une structure de données qui représente une partition d'un ensemble fini (ou de manière équivalente une relation d'équivalence).
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Recherche locale (optimisation)En algorithmique, la recherche locale est une méthode générale utilisée pour résoudre des problèmes d'optimisation, c'est-à-dire des problèmes où l'on cherche la meilleure solution dans un ensemble de solutions candidates. La recherche locale consiste à passer d'une solution à une autre solution proche dans l'espace des solutions candidates (l'espace de recherche) jusqu'à ce qu'une solution considérée comme optimale soit trouvée, ou que le temps imparti soit dépassé.