Publication

Tight Vector Bin Packing with Few Small Items via Fast Exact Matching in Multigraphs

Concepts associés (37)
Problème de bin packing
En recherche opérationnelle et en optimisation combinatoire, le bin packing est un problème algorithmique. Il s'agit de ranger des objets dans un nombre minimum de boîtes. Le problème classique se définit en une dimension, mais il existe de nombreuses variantes en deux ou trois dimensions. Le problème de bin packing peut s'appliquer à un grand nombre de secteurs industriels ou informatiques. Pour la version classique en une dimension : rangement de fichiers sur un support informatique ; découpe de câbles ; remplissage de camions ou de containers avec comme seule contrainte le poids ou le volume des articles.
Problème du sac à dos
En algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Algorithme
thumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Couplage (théorie des graphes)
En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
Algorithme de Prim
thumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Complexité en temps
En algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Perfect matching
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.
Algorithme génétique
Les algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Matching in hypergraphs
In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a set of subsets of V called hyperedges. Each hyperedge may contain one or more vertices. A matching in H is a subset M of E, such that every two hyperedges e_1 and e_2 in M have an empty intersection (have no vertex in common).
Maximum cardinality matching
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.