thumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe. L'algorithme a été développé en 1930 par le mathématicien tchèque Vojtech Jarnik, puis a été redécouvert et republié par Robert C. Prim et Edsger W. Dijkstra en 1959. Ainsi, il est parfois appelé DJP algorithm, Jarník's algorithm, Prim–Jarník algorithm, ou Prim–Dijkstra algorithm. L'algorithme consiste à faire croître un arbre depuis un sommet. On part d'un sous-ensemble contenant un sommet unique. À chaque itération, on agrandit ce sous-ensemble en prenant l'arête incidente à ce sous-ensemble de coût minimum. En effet, si l'on prend une arête dont les deux extrémités appartiennent déjà à l'arbre, l'ajout de cette arête créerait un deuxième chemin entre les deux sommets dans l'arbre en cours de construction et le résultat contiendrait un cycle. À droite, on donne un exemple d'exécution de l'algorithme de Prim. Le pseudo-code de l'algorithme de Prim est similaire à celui de l'algorithme de Dijkstra et utilise le type abstrait . fonction prim(G, s) pour tout sommet t cout[t] := +∞ pred[t] := null cout[s] := 0 F := file de priorité contenant les sommets de G avec cout[.] comme priorité tant que F ≠ vide t := F.defiler pour toute arête t--u avec u appartenant à F si cout[u] >= poids de l'arête entre les sommets t et u pred[u] := t cout[u] := poids de l'arête entre les sommets t et u F.notifierDiminution(u) retourner pred Au début tous les sommets sont dans la file de priorité. La priorité est donnée par cout[.]. Autrement dit, le sommet possédant la plus faible valeur dans le tableau cout[.] sortira en premier de la file.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-451: Distributed algorithms
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
Afficher plus
Séances de cours associées (123)
Algorithme caché du sous-groupe
Continue la discussion sur le problème caché du sous-groupe de Simon, en se concentrant sur la recherche d'une base.
Algorithme caché du sous-groupe
Couvre l'algorithme caché du sous-groupe dans le calcul quantique, mettant l'accent sur les projecteurs et les postulats de mesure.
Complexité algorithmique : définition et exemples
Explore l'exactitude de l'algorithme, l'analyse de la complexité dans le pire des cas et la comparaison de l'efficacité en fonction de la taille des entrées.
Afficher plus
Concepts associés (10)
Algorithme de Kruskal
En informatique, l'algorithme de Kruskal est un algorithme de recherche d'arbre recouvrant de poids minimum (ARPM) ou arbre couvrant minimum (ACM) dans un graphe connexe non-orienté et pondéré. Il a été conçu en 1956 par Joseph Kruskal. On considère un graphe connexe non-orienté et pondéré : chaque arête possède un poids qui est un nombre qui représente le coût de cette arête. Dans un tel graphe, un arbre couvrant est un sous-graphe connexe sans cycle qui contient tous les sommets du graphe.
Algorithme glouton
Un algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Arbre couvrant de poids minimal
thumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).
Afficher plus
MOOCs associés (11)
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.