Chaîne cinématique (robotique)thumb|Exemple de chaîne cinématique du corps humain. Le genou est représenté comme une liaison pivot, la hanche par une liaison sphérique, etc. La chaîne cinématique est un modèle mathématique des systèmes mécaniques dans lequel un ensemble de solides indéformables (les "corps" ou "liens" du système) sont connectés entre eux par des articulations. Les articulations d'une chaîne cinématique sont des liaisons mécaniques.
Microsystème électromécaniquevignette|Un accéléromètre MEMS. vignette|Un capteur de pression MEMS (sur une pièce qui donne l'échelle). Un microsystème électromécanique est un microsystème fabriqué à partir de matériaux semi-conducteurs. Il comprend un ou plusieurs éléments mécaniques et utilise l’électricité comme source d’énergie, en vue de réaliser une fonction de capteur ou d’actionneur, avec au moins une structure présentant des dimensions micrométriques ; la fonction du système étant en partie assurée par la forme de cette structure.
Cinématique inverseLa cinématique inverse (souvent abrégée IK, de l'anglais inverse kinematics) désigne l'ensemble des méthodes de calcul des positions et rotations d'un modèle articulaire afin d'obtenir une pose désirée. Les méthodes de cinématique inverse sont principalement utilisées en infographie, en robotique, en animation ou encore en chimie. Le terme cinématique inverse renvoie au fait que la résolution des calculs est généralement basée sur les équations cinématiques du modèle articulaire.
Robot kinematicsIn robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation. Robot kinematics studies the relationship between the dimensions and connectivity of kinematic chains and the position, velocity and acceleration of each of the links in the robotic system, in order to plan and control movement and to compute actuator forces and torques.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
Théorème du séparateur planaireEn théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
Test de planaritéEn théorie des graphes, le problème du test de planarité est le problème algorithmique qui consiste à tester si un graphe donné est un graphe planaire (c'est-à-dire s'il peut être dessiné dans le plan sans intersection d'arêtes). Il s'agit d'un problème bien étudié en informatique pour lequel de nombreux algorithmes pratiques ont été donnés, souvent en décrivant de nouvelles structures de données. La plupart de ces méthodes fonctionnent en temps O(n) (temps linéaire), où n est le nombre d'arêtes (ou de sommets) du graphe, ce qui est asymptotiquement optimal.
Silicènevignette|Images par STM de la première (4×4) et seconde (√3×√3-β) couche de silicène sur une surface d'argent. Taille de l'image 16×16 nm. Le silicène est une forme allotropique du silicium. C'est un matériau bidimensionnel analogue au graphène et possédant beaucoup de ses propriétés. Il a été observé pour la première fois en 2010. Bien que dès 1994, des théoriciens aient envisagé l'existence du silicène et prédit certaines de ses propriétés, des structures de silicium pouvant correspondre à ces prédictions n'ont été observées qu'à partir de 2009, grâce à la microscopie à effet tunnel.
Miroir de BraggLe miroir de Bragg, mis au point par William Lawrence Bragg (lauréat du prix Nobel de physique de 1915), est une succession de surfaces planes transparentes d’indices de réfraction différents. Il permet de réfléchir, grâce à des phénomènes d’interférences constructives, la quasi-totalité de l’énergie incidente à une longueur d'onde donnée. Ceci est possible à condition que l’onde incidente soit proche de l’incidence normale. Aucun autre miroir ne peut égaler ce résultat (les pertes diélectriques étant plus faibles que les pertes métalliques pour les longueurs d’onde optiques).