Résumé
En mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie. La démonstration par Stephen Smale, en 1961, de la conjecture de Poincaré en dimensions supérieures, montra que les dimensions 3 et 4 étaient plus difficiles : elles nécessitaient de nouvelles méthodes, alors que les dimensions supérieures offraient assez de liberté pour réduire les problèmes aux méthodes calculatoires de la chirurgie. La conjecture de géométrisation de Thurston, formulée à la fin des années 1970, offrait un cadre suggérant que géométrie et topologie étaient intimement liées en basses dimensions, et la démonstration par Thurston de la géométrisation pour les utilisait une gamme d'outils issus de domaines mathématiques jusqu'alors peu liés. La découverte par Vaughan Jones de son polynôme, au début des années 1980, donna une nouvelle orientation à la théorie des nœuds et fit apparaître des connexions, encore non complètement élucidées, entre topologie en basses dimensions et physique mathématique. En 2002, Grigori Perelman annonça une démonstration de la conjecture de Poincaré en dimension 3 à l'aide du flot de Ricci introduit par Richard S. Hamilton, une idée empruntée à l'analyse géométrique. De façon générale, ces progrès ont mené à une meilleure intégration de ce domaine dans le reste des mathématiques. Quelques théorèmes illustrent le fait que beaucoup des outils de base de l'étude des variétés de dimensions supérieures ne s'appliquent pas en basses dimensions. Le théorème de Steenrod établit que le fibré tangent d'une 3-variété orientable est toujours trivial. Autrement dit : la seule classe caractéristique d'une 3-variété est l'obstruction à l'orientabilité.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.