Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The Skinned Multi-Person Linear (SMPL) model represents human bodies by mapping pose and shape parameters to body meshes. However, not all pose and shape parameter values yield physically-plausible or even realistic body meshes. In other words, SMPL is under-constrained and may yield invalid results. We propose learning a prior that restricts the SMPL parameters to values that produce realistic poses via adversarial training. We show that our learned prior covers the diversity of the real-data distribution, facilitates optimization for 3D reconstruction from 2D keypoints, and yields better pose estimates when used for regression from images. For all these tasks, it outperforms the state-of-the-art VAE-based approach to constraining the SMPL parameters. The code will be made available at https://github.com/cvlab epfl/adv_param_pose_prior.
Michael Christoph Gastpar, Aditya Pradeep