Publication

A Modular Multimodal Architecture for Gaze Target Prediction: Application to Privacy-Sensitive Settings

Jean-Marc Odobez, Anshul Gupta, Samy Tafasca
2022
Article de conférence
Résumé

Predicting where a person is looking is a complex task, requiring to understand not only the person's gaze and scene content, but also the 3D scene structure and the person's situation (are they manipulating? interacting or observing others? attentive?) to detect obstructions in the line of sight or apply attention priors that humans typically have when observing others. In this paper, we hypothesize that identifying and leveraging such priors can be better achieved through the exploitation of explicitly derived multimodal cues such as depth and pose. We thus propose a modular multimodal architecture allowing to combine these cues using an attention mechanism. The architecture can naturally be exploited in privacy-sensitive situations such as surveillance and health, where personally identifiable information cannot be released. We perform extensive experiments on the GazeFollow and VideoAttentionTarget public datasets, obtaining state-of-the-art performance and demonstrating very competitive results in the privacy setting case. (1)

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (20)
Privacy law
Privacy law is the body of law that deals with the regulating, storing, and using of personally identifiable information, personal healthcare information, and financial information of individuals, which can be collected by governments, public or private organisations, or other individuals. It also applies in the commercial sector to things like trade secrets and the liability that directors, officers, and employees have when handing sensitive information.
Vie privée et informatique
Avec l'apparition de l'informatique et l'accessibilité à internet, les problèmes de la confidentialité des données personnelles des usagers sont devenus un véritable enjeu. Si le stockage des données de navigation a été considérée comme un progrès (Big data), il s'est aussi accompagné d'inquiétudes sur la protection de la vie privée, à travers la gestion opaque de ces informations, avec la possibilité pour quiconque d'y avoir un accès non contrôlé. En littérature on parle de Big Brother pour "qualifier [...
Vie privée
vignette|droite|Dessin de Cham dans Le Charivari en 1868 : « Le portrait de ma femme que vous envoyez à l’Exposition ? Vous lui avez mis un grain de beauté sous le bras gauche, c’est de la vie privée. Je vous fais un procès ». La vie privée (du latin privatus, « séparé de, privé de ») est la capacité, pour une personne ou pour un groupe de personnes, de s'isoler afin de protéger son bien-être. Les limites de la vie privée ainsi que ce qui est considéré comme privé diffèrent selon les groupes, les cultures et les individus, selon les coutumes et les traditions bien qu'il existe toujours un certain tronc commun.
Afficher plus
Publications associées (37)

Differentially private multi-agent constraint optimization

Boi Faltings, Sujit Prakash Gujar, Aleksei Triastcyn, Sankarshan Damle

Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...
Dordrecht2024

Arbitrary Decisions are a Hidden Cost of Differentially Private Training

Carmela González Troncoso, Bogdan Kulynych

Mechanisms used in privacy-preserving machine learning often aim to guarantee differential privacy (DP) during model training. Practical DP-ensuring training methods use randomization when fitting model parameters to privacy-sensitive data (e.g., adding Ga ...
New York2023

Data Privacy Concerns as a Source of Resistance to Complete Mobile Data Collection Tasks Via a Smartphone App

Daniel Gatica-Perez

Smartphones present many interesting opportunities for survey research, particularly through the use of mobile data collection applications (apps). There is still much to learn, however, about how to integrate apps in general population surveys. Recent stu ...
OXFORD UNIV PRESS INC2022
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.