Mémoire à long termeEn psychologie cognitive, la mémoire à long terme (MLT) est la mémoire qui permet de retenir, de manière illimitée, une information sur des périodes de temps très longues (années). La notion de MLT est un concept utilisé dans les modèles de mémoire qui distinguent plusieurs sous-systèmes en fonction du type d'information mémorisé et de la durée de rétention. La mémoire à long terme s'oppose ainsi au registre sensoriel (ou mémoire sensorielle), à la mémoire à court terme et à la mémoire de travail.
Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
Neural adaptationNeural adaptation or sensory adaptation is a gradual decrease over time in the responsiveness of the sensory system to a constant stimulus. It is usually experienced as a change in the stimulus. For example, if a hand is rested on a table, the table's surface is immediately felt against the skin. Subsequently, however, the sensation of the table surface against the skin gradually diminishes until it is virtually unnoticeable. The sensory neurons that initially respond are no longer stimulated to respond; this is an example of neural adaptation.
Modèle de fondationUn modèle de fondation est un modèle d'intelligence artificielle de grande taille, entraîné sur une grande quantité de données non étiquetées (généralement par apprentissage auto-supervisé ). Le modèle résultant peut être adapté à un large éventail de tâches en aval (downstream tasks en anglais). Depuis leur introduction en 2018, les modèles de fondation ont induit une transformation majeure dans la manière de construire les systèmes d'IA. Les premiers modèles de fondation étaient de grands modèles de langage pré-entraînés, notamment BERT et GPT-3.
Mémoire à court termeLa mémoire à court terme (MCT) désigne en psychologie le type de mémoire qui permet de retenir et de réutiliser une quantité limitée d'informations pendant un temps relativement court, environ une demi-minute. Un grand nombre de recherches en psychologie cognitive ont cherché à déterminer les caractéristiques (capacité, durée, fonctionnement) et le rôle de la mémoire à court terme dans la cognition. Le concept de mémoire à court terme est assez ancien en psychologie scientifique.
Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Dérivation automatiqueEn mathématique et en calcul formel, la dérivation automatique (DA), également appelé dérivation algorithmique, dérivation formelle, ou auto-dérivation est un ensemble de techniques d'évaluation de la dérivée d'une fonction par un programme informatique. La dérivation automatique exploite le fait que chaque programme informatique, aussi compliqué soit-il, exécute une séquence d'opérations arithmétiques élémentaires (addition, soustraction, multiplication, division, etc.) et des fonctions élémentaires (exp, log,sin, cos, etc.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.