Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Algorithme du simplexeLalgorithme du simplexe est un algorithme de résolution des problèmes d'optimisation linéaire. Il a été introduit par George Dantzig à partir de 1947. C'est probablement le premier algorithme permettant de minimiser une fonction sur un ensemble défini par des inégalités. De ce fait, il a beaucoup contribué au démarrage de l'optimisation numérique. L'algorithme du simplexe a longtemps été la méthode la plus utilisée pour résoudre les problèmes d'optimisation linéaire.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Admissible heuristicIn computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path. It is related to the concept of consistent heuristics. While all consistent heuristics are admissible, not all admissible heuristics are consistent. An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm.
Algorithme de recherche best-firstLa recherche best-first (littéralement : le meilleur en premier) est un algorithme de recherche qui parcourt un graphe en explorant le nœud le plus "prometteur" selon une règle spécifique. Judea Pearl décrit la recherche best-first comme l'estimation de la qualité d'un nœud n par une "fonction heuristique d'évaluation qui, en général, peut dépendre de la description de n, de l'état d'arrivée, des informations amassées par l'algorithme au moment de l'évaluation et, surtout, de connaissances supplémentaires à propos du problème".
ExtremumUn extremum (pluriel extrema ou extremums), ou extrémum (pluriel extrémums), est une valeur extrême, soit maximum, soit minimum. Cette notion est particulièrement utilisée en mathématiques, où l'expression maximo-minimum, introduite par Nicolas de Cues, correspond à partir de Fermat et Leibniz aux extrêmes d'une courbe ou d'une fonction, repérés par le fait que les dérivées s'y annulent. Elle est aussi utilisée en physique, où le principe de moindre action est un principe extrémal ainsi que Euler l'a montré.
Recherche séquentiellevignette|Diagramme de recherche séquentielle La recherche séquentielle ou recherche linéaire est un algorithme pour trouver une valeur dans une liste. Elle consiste simplement à considérer les éléments de la liste les uns après les autres, jusqu'à ce que l'élément soit trouvé, ou que toutes les cases aient été lues. Elle est aussi appelée recherche par balayage. La recherche séquentielle consiste à prendre les éléments de la liste les uns après les autres, jusqu'à avoir trouvé la cible, ou avoir épuisé la liste.
HeuristiqueL'heuristique ou euristique (du grec ancien εὑρίσκω, heuriskô, « je trouve ») est en résolvant des problèmes à partir de connaissances incomplètes. Ce type d'analyse permet d'aboutir en un temps limité à des solutions acceptables. Celles-ci peuvent s'écarter de la solution optimale. Pour Daniel Kahneman, c'est une procédure qui aide à trouver des réponses adéquates, bien que souvent imparfaites à des questions difficiles. Ce système empirique inclut notamment la méthode essai-erreur ou l'analyse statistique des échantillons aléatoires.
TreapEn informatique, les notions de treap ou arbretas et d'arbres binaires de recherche randomisés sont deux formes très proche d'arbre binaire de recherche, des structures de données qui maintiennent un ensemble dynamique de clés ordonnées et permettent d'effectuer une recherche binaire parmi ces clés.
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.