Algorithme de Primthumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Arbre bicoloreUn arbre bicolore, ou arbre rouge-noir ou arbre rouge et noir est un type particulier d'arbre binaire de recherche équilibré, qui est une structure de données utilisée en informatique théorique. Les arbres bicolores ont été inventés en 1972 par Rudolf Bayer qui les nomme symmetric binary B-trees (littéralement « arbres B binaires symétriques »). Chaque nœud de l'arbre possède en plus de ses données propres un attribut binaire qui est souvent interprété comme sa « couleur » (rouge ou noir).
Arbre AVLEn informatique théorique, les arbres AVL ont été historiquement les premiers arbres binaires de recherche automatiquement équilibrés. Dans un arbre AVL, les hauteurs des deux sous-arbres d'un même nœud diffèrent au plus de un. La recherche, l'insertion et la suppression sont toutes en dans le pire des cas. L'insertion et la suppression nécessitent d'effectuer des rotations. La dénomination « arbre AVL » provient des noms respectifs de ses deux inventeurs, respectivement et , qui l'ont publié en 1962 sous le titre An Algorithm for the Organization of Information.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Algorithme A*En informatique, plus précisément en intelligence artificielle, l'algorithme de recherche A* (qui se prononce A étoile, ou A star en anglais) est un algorithme de recherche de chemin dans un graphe entre un nœud initial et un nœud final tous deux donnés. En raison de sa simplicité il est souvent présenté comme exemple typique d'algorithme de planification, domaine de l'intelligence artificielle.
Algorithme de KarmarkarL’algorithme de Karmarkar est un algorithme introduit par Narendra Karmarkar en 1984 pour résoudre les problèmes d'optimisation linéaire. C'est le premier algorithme réellement efficace qui résout ces problèmes en un temps polynomial. La méthode de l'ellipsoïde fonctionne aussi en temps polynomial mais est inefficace en pratique. En posant le nombre de variables et le nombre de bits d'entrée de l'algorithme, l'algorithme de Karmarkar réalise opérations sur bits à comparer aux opérations pour la méthode des ellipsoïdes.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Algorithme évolutionnistevignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.
Heuristique de jugementLes heuristiques de jugement, concept fréquemment employé dans le domaine de la cognition sociale, sont des opérations mentales automatiques, intuitives et rapides pouvant être statistiques ou non statistiques. Ces raccourcis cognitifs sont utilisés par les individus afin de simplifier leurs opérations mentales dans le but de répondre aux exigences de l’environnement. Par exemple, les gens ont tendance à estimer le temps mis pour trouver un emploi en fonction de la facilité avec laquelle ils peuvent penser à des individus qui ont récemment été engagés, et non selon le temps moyen de recherche dans la population.
Recherche locale (optimisation)En algorithmique, la recherche locale est une méthode générale utilisée pour résoudre des problèmes d'optimisation, c'est-à-dire des problèmes où l'on cherche la meilleure solution dans un ensemble de solutions candidates. La recherche locale consiste à passer d'une solution à une autre solution proche dans l'espace des solutions candidates (l'espace de recherche) jusqu'à ce qu'une solution considérée comme optimale soit trouvée, ou que le temps imparti soit dépassé.