Un extremum (pluriel extrema ou extremums), ou extrémum (pluriel extrémums), est une valeur extrême, soit maximum, soit minimum. Cette notion est particulièrement utilisée en mathématiques, où l'expression maximo-minimum, introduite par Nicolas de Cues, correspond à partir de Fermat et Leibniz aux extrêmes d'une courbe ou d'une fonction, repérés par le fait que les dérivées s'y annulent. Elle est aussi utilisée en physique, où le principe de moindre action est un principe extrémal ainsi que Euler l'a montré.
Dans un ensemble ordonné E, un élément d'une partie A est le plus grand élément, ou maximum de A, s'il appartient à A et est supérieur à tout autre élément de A. L'existence d'un maximum n'est en général pas assurée pour toute partie d'un ensemble ordonné. En revanche, s'il existe, un tel élément est unique (ce qui justifie l'emploi de l'article défini « le » dans la définition). De manière analogue, le plus petit élément ou minimum est, s'il existe, un élément de A inférieur à tout autre élément de A.
Si une partie A de E admet deux maxima, m1 et m2, alors m1 est plus grand que tout élément de A, donc en particulier que m2 ; et de même, m2 est plus grand que m1. Par antisymétrie des relations d'ordre, l'égalité m1 = m2 s'en déduit.
D'autres notions relatives aux ensembles ordonnés sont proches de celles de maximum ; les comparer permet de mieux les appréhender.
La notion de majorant et de minorant : s'il existe, un élément de E est un majorant de A s'il est plus grand que tout élément de A ; s'il existe, un élément de E est un minorant de A s'il est plus petit que tout élément de A ; ainsi, les extremums (le maximum et le minimum) qui existent dans un ensemble E font partie (respectivement) des majorants et minorants de E dans lui-même.
La notion de borne (borne supérieure, aussi appelée supremum, ou borne inférieure, aussi appelée infimum) : si elle existe, la borne supérieure de A est le plus petit de tous les majorants de A dans E (la borne supérieure de A est donc définie comme le minimum d'une certaine partie de E et son unicité est garantie mais pas son existence).