Inquiry-based learningInquiry-based learning (also spelled as enquiry-based learning in British English) is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Champ visuelNormal_right_eye_visual_fild_by_campimeter.jpg Le champ visuel est la portion de l'espace vue par un œil regardant droit devant lui et immobile. Lorsque l’œil fixe un point, il est capable de détecter dans une zone d'espace limitée, des lumières, des couleurs et des formes. L'examen du champ visuel ou périmétrie étudie la sensibilité à la lumière à l'intérieur de cet espace. L'interprétation des anomalies du champ visuel permet de diagnostiquer les dysfonctionnements ou les pathologies de la voie visuelle allant de la rétine au cortex visuel occipital.
Structure from motionvignette|Schéma simplifié du procédé. Le principe de Structure from motion (SfM, « Structure acquise à partir d'un mouvement ») est une technique d' photogrammétrique destinée à estimer la structure 3D de quelque chose à partir d'images 2D. Elle combine la vision par ordinateur et la vue humaine. En terme biologique, le SfM désigne le phénomène par lequel une personne (et autres créatures vivantes) peut estimer la structure 3D d'un objet ou d'une scène en mouvement à partir de son champ de vision 2D (rétinien).
Photophone (appareil)Photophone est un mot introduit en 2002 pour désigner les téléphones mobiles dont le capteur permet de prendre des photos numériques de haute capables de concurrencer celles des appareils photographiques numériques compacts. Dans cette acception, la majorité des téléphones mobiles commercialisés actuellement, smartphones et téléphones mobiles basiques (excepté les produits d'entrée de gamme) correspondent à cette définition du photophone. thumb|Sony Ericsson K800i, l'un des premiers téléphones portables à être équipé d'un capteur de 3,2 mégapixels.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Recalage d'imagesEn , le recalage est une technique qui consiste en la « mise en correspondance d'images », dans le but de comparer ou combiner leurs informations respectives. Cette méthode repose sur les mêmes principes physique et le même type de modélisation mathématique que la . Cette mise en correspondance se fait par la recherche d'une transformation géométrique permettant de passer d'une image à une autre.