Laplacien discretEn mathématiques, le laplacien discret est une analogie du laplacien continu adaptée au cas de problèmes discret (graphes, par exemple). Il est notamment employé en analyse numérique, par exemple dans le cadre de la résolution de l'équation de la chaleur par la méthode des différences finies, ou en pour la détection de contours. Soit une fonction réelle de deux variables réelles et et . On définit le laplacien discret de comme la somme des dérivées secondes discrètes selon et selon , soit : L'exemple précédent est décrit dans une grille régulière cartésienne de dimension (plan).
Iterative reconstructionIterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Partitionnement spectralEn informatique théorique, le partitionnement spectral ou spectral clustering en anglais, est un type de partitionnement de données prenant en compte les propriétés spectrales de l'entrée. Le partitionnement spectral utilise le plus souvent les vecteurs propres d'une matrice de similarités. Par rapport à des algorithmes classiques comme celui des k-moyennes, cette technique offre l'avantage de classer des ensembles de données de structure « non-globulaire », dans un espace de représentation adéquat.
Marche aléatoireEn mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Système de réaction-diffusionUn système de réaction-diffusion est un modèle mathématique qui décrit l'évolution des concentrations d'une ou plusieurs substances spatialement distribuées et soumises à deux processus : un processus de réactions chimiques locales, dans lequel les différentes substances se transforment, et un processus de diffusion qui provoque une répartition de ces substances dans l'espace. Cette description implique naturellement que de tels systèmes sont appliqués en chimie.
Mesure sigma-finieSoit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (E) d'éléments de la tribu Σ, tous de mesure finie, avec Mesure finie Mesure de comptage sur un ensemble dénombrable Mesure de Lebesgue. En effet, l'ensemble des intervalles pour tous les nombres entiers est un recouvrement dénombrable de , et chacun des intervalles est de mesure 1.
Technology adoption life cycleThe technology adoption lifecycle is a sociological model that describes the adoption or acceptance of a new product or innovation, according to the demographic and psychological characteristics of defined adopter groups. The process of adoption over time is typically illustrated as a classical normal distribution or "bell curve". The model indicates that the first group of people to use a new product is called "innovators", followed by "early adopters".
Sigma additivitévignette|Illustration de la sigma additivité La sigma additivité, appelé aussi additivité dénombrable, est un concept en théorie de la mesure. Soit un ensemble et un ensemble de parties de . On dit que l'application μ est σ-additive sur lorsqu'elle vérifie la propriété suivante : si E1, E2, ... est une suite d'éléments de , si ces parties de sont deux à deux disjointes et si leur réunion E est aussi un élément de , alors la valeur μ(E) de μ sur cette réunion E est égale à la somme des valeurs de μ sur les parties Ek : Il s'agit d'une version plus forte de l'additivité simple.
Distance matrixIn mathematics, computer science and especially graph theory, a distance matrix is a square matrix (two-dimensional array) containing the distances, taken pairwise, between the elements of a set. Depending upon the application involved, the distance being used to define this matrix may or may not be a metric. If there are N elements, this matrix will have size N×N. In graph-theoretic applications, the elements are more often referred to as points, nodes or vertices. In general, a distance matrix is a weighted adjacency matrix of some graph.