In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.
A different but related notion that should not be confused with σ-finiteness is s-finiteness.
Let be a measurable space and a measure on it.
The measure is called a σ-finite measure, if it satisfies one of the four following equivalent criteria:
the set can be covered with at most countably many measurable sets with finite measure. This means that there are sets with for all that satisfy .
the set can be covered with at most countably many measurable disjoint sets with finite measure. This means that there are sets with for all and for that satisfy .
the set can be covered with a monotone sequence of measurable sets with finite measure. This means that there are sets with and for all that satisfy .
there exists a strictly positive measurable function whose integral is finite. This means that for all and .
If is a -finite measure, the measure space is called a -finite measure space.
For example, Lebesgue measure on the real numbers is not finite, but it is σ-finite. Indeed, consider the intervals [k, k + 1) for all integers k; there are countably many such intervals, each has measure 1, and their union is the entire real line.
Alternatively, consider the real numbers with the counting measure; the measure of any finite set is the number of elements in the set, and the measure of any infinite set is infinity. This measure is not σ-finite, because every set with finite measure contains only finitely many points, and it would take uncountably many such sets to cover the entire real line.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques et plus précisément en théorie de la mesure, étant donnés deux espaces mesurés et on définit une mesure produit μ1×μ2 sur l'espace mesurable . La tribu produit est la tribu sur le produit cartésien engendrée par les parties de la forme , où appartient à et à : Une mesure produit μ1×μ2 est une mesure sur telle que : D'après le théorème d'extension de Carathéodory, une telle mesure μ1×μ2 existe, et si μ1 et μ2 sont σ-finies alors elle est unique.
En théorie de la mesure, le théorème d'extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué par généralisation à un cadre abstrait des idées fondant la construction de la mesure de Lebesgue, et exposé sous diverses variantes, il est également mentionné par certains auteurs sous les noms de théorème de Carathéodory-Hahn ou théorème de Hahn-Kolmogorov (certaines sources distinguent un théorème de Carathéodory qui est l'énoncé d'existence, et un théorème de Hahn qui est l'énoncé d'unicité).
En mathématiques, une mesure μ est dite complète lorsque tout ensemble négligeable pour cette mesure appartient à la tribu sur laquelle μ est définie. Lorsqu'une mesure n'est pas complète, il existe un procédé assez simple de complétion de la mesure, c'est-à-dire de construction d'une mesure complète apparentée de très près à la mesure initiale. Ainsi la mesure de Lebesgue (considérée comme mesure sur la tribu de Lebesgue) est la complétion de la mesure dite parfois « mesure de Borel-Lebesgue », c'est-à-dire sa restriction à la tribu borélienne.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
We prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit which measures by how much the STFT of a function fails to be optimally concentrated on an arbitrary set of pos ...
Upcoming wide-field surveys will discover thousands of new strongly lensed quasars which will be monitored with unprecedented cadence by the Legacy Survey of Space and Time (LSST). Many of these quasars will undergo caustic-crossing events over the 10-yr L ...
Oxford Univ Press2024
Time has always been a central factor in understanding the challenges of daily mobility. For a long time, and still today, methods of economic evaluation of transport projects have monetized time savings so that they can be included in the cost–benefit ana ...