Entier de Gaussthumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire.
KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.
Musique plananteLa musique planante (en anglais : space music) ou simplement le planant est une dénomination générale pour des morceaux de musique évoquant des sentiments comme la grandeur cosmique, l'apesanteur contemplative, ou une imagerie de science-fiction hiératique. On l'associe généralement à certains albums de musique ambient, en particulier de musique électronique des années 1970 (comme Tangerine Dream, Klaus Schulze, ou les deux premiers disques de Jean-Michel Jarre) mais le style a un renouveau depuis le milieu des années 1990 en tant que tel ou que chill-out.
Rationnel de GaussEn mathématiques, un est un nombre complexe dont les parties réelle et imaginaire sont des nombres rationnels. L'ensemble des rationnels de Gauss est donc C'est un sous-corps de C, généralement noté Q(i) ou Q[i]. Ces nombres tirent leur nom du mathématicien allemand Carl Friedrich Gauss. Q(i) est le corps de rupture du polynôme X + 1. C'est donc un corps quadratique imaginaire et un corps cyclotomique. L'anneau des entiers de Q(i) est l'anneau Z[i] des entiers de Gauss. Son discriminant est –4.
Component (graph theory)In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices.
Connexité simpleEn topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
3-sphèrevignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.