thumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire. Cet ensemble dispose en plus d'une division euclidienne , ce qui permet d'y bâtir une arithmétique très analogue à celle des entiers relatifs. De manière plus générale, cet ensemble peut être vu comme un anneau d'entiers quadratiques et à ce titre est un anneau de Dedekind. Ils sont largement utilisés en théorie algébrique des nombres et en arithmétique modulaire, par exemple pour l'étude d'équations diophantiennes, en particulier ils fournissent une démonstration élégante du théorème des deux carrés de Fermat. Leur utilisation a permis à Carl Friedrich Gauss de démontrer la loi de réciprocité quadratique. thumb|Ouvrage traitant des entiers de Gauss (1801). Les entiers de Gauss ont été découverts alors que Gauss recherche une solution à la question des congruences des carrés étudiée dans un premier temps par Fermat. Euler formalise la notion de résidu quadratique et conjecture la solution, c'est-à-dire la loi de réciprocité quadratique. Legendre reprend le théorème et propose une preuve incomplète et insuffisante. À l'âge de 18 ans, Gauss démontre le théorème. La démonstration est publiée trois ans plus tard. Il considère cette loi comme le joyau de l'arithmétique, l'appelant même le « théorème d'or ». Pour résoudre cette question, il découvre un ensemble : celui des entiers qui portent maintenant son nom. Ils bénéficient des mêmes propriétés arithmétiques que les entiers relatifs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
Afficher plus
Publications associées (65)
Unités associées (1)
Concepts associés (28)
Anneau euclidien
vignette|Statue d'Euclide à Oxford. En mathématiques et plus précisément en algèbre, dans le cadre de la théorie des anneaux, un anneau euclidien est un type particulier d'anneau commutatif intègre (voir aussi l'article anneau euclidien non commutatif). Un anneau est dit euclidien s'il est possible d'y définir une division euclidienne. Un anneau euclidien est toujours principal. Cette propriété est riche de conséquences : tout anneau principal vérifie l'identité de Bézout, le lemme d'Euclide, il est factoriel et satisfait les conditions du théorème fondamental de l'arithmétique.
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Théorie algébrique des nombres
En mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.
Afficher plus
MOOCs associés (11)
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Afficher plus