Méthode de décodageEn théorie des codes, il existe plusieurs méthodes standards pour décoder des mots de code transmis sur un canal de communication avec bruit. Ce sont donc des techniques qui servent à effectuer l'opération inverse du codage de canal. Le décodage par vote majoritaire. Le décodage par observateur idéal. Le décodage par probabilité maximale. Le décodage par distance minimale. Le décodage par syndrome est une méthode de décodage très efficace pour un code linéaire sur un canal de communication avec bruit.
Complexité descriptiveEn informatique théorique, la complexité descriptive est une branche de la théorie de la complexité et de la théorie des modèles, qui caractérise les classes de complexité en termes de logique qui permet de décrire les problèmes. La complexité descriptive donne un nouveau point de vue car on définit des classes de complexité sans faire appel à une notion de machines comme les machines de Turing. Par exemple la classe NP correspond à l'ensemble des problèmes exprimables en logique du second ordre existentielle : c'est le théorème de Fagin.
Code à longueur variableDans la théorie des codes, le code à longueur variable est un code qui associe les symboles de la source à un nombre variable de bits. Les codes à longueur variable peuvent permettre à la source d'être compressée et décompressée avec une erreur nulle: il s'agit d'une compression sans perte. L'opération inverse du codage est alors possible pour chaque symbole. À partir d'une bonne stratégie de codage, une source i.i.d peut être compressée arbitrairement proche de son entropie, ce qui permet par exemple d'associer des mots longs aux symboles sources les moins fréquents.
Complexité de la communicationLa complexité de la communication ou complexité de communication est une notion étudiée en informatique théorique. Le dispositif abstrait classique est le suivant : Alice et Bob ont chacun un message, et ils veulent calculer un nouveau message à partir de leurs messages, en se transmettant un minimum d'information. Par exemple, Alice et Bob reçoivent un mot chacun, et ils doivent décider s'ils ont reçu le même mot ; ils peuvent bien sûr s'envoyer leur mot l'un à l'autre et comparer, mais la question est de minimiser le nombre de messages.
BPP (complexité)En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3. La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes : Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.
Punctured codeIn coding theory, puncturing is the process of removing some of the parity bits after encoding with an error-correction code. This has the same effect as encoding with an error-correction code with a higher rate, or less redundancy. However, with puncturing the same decoder can be used regardless of how many bits have been punctured, thus puncturing considerably increases the flexibility of the system without significantly increasing its complexity. In some cases, a pre-defined pattern of puncturing is used in an encoder.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Code de Hamming (7,4)En théorie des codes, le Code de Hamming (7,4) est un code correcteur linéaire binaire de la famille des codes de Hamming. À travers un message de sept bits, il transfère quatre bits de données et trois bits de parité. Il permet la correction d'un bit erroné. Autrement dit, si, sur les sept bits transmis, l'un d'eux au plus est altéré (un « zéro » devient un « un » ou l'inverse), alors il existe un algorithme permettant de corriger l'erreur. Il fut introduit par Richard Hamming (1915-1998) en 1950 dans le cadre de son travail pour les laboratoires Bell.
Probabilité algorithmiqueEn théorie algorithmique de l'information, la probabilité algorithmique, aussi connue comme probabilité de Solomonoff, est une méthode permettant d’assigner une probabilité à une observation donnée. Il a été inventé par Ray Solomonoff dans les années 1960. Elle est utilisée dans la théorie de l'inférence inductive et dans l'analyse des algorithmes. En particulier, dans sa thèorie de l'induction, Solomonoff utilise une telle formulation pour exprimer la probabilité a priori dans la formule de Bayes.
Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.