In coding theory, a variable-length code is a code which maps source symbols to a variable number of bits. The equivalent concept in computer science is bit string.
Variable-length codes can allow sources to be compressed and decompressed with zero error (lossless data compression) and still be read back symbol by symbol. With the right coding strategy an independent and identically-distributed source may be compressed almost arbitrarily close to its entropy. This is in contrast to fixed-length coding methods, for which data compression is only possible for large blocks of data, and any compression beyond the logarithm of the total number of possibilities comes with a finite (though perhaps arbitrarily small) probability of failure.
Some examples of well-known variable-length coding strategies are Huffman coding, Lempel–Ziv coding, arithmetic coding, and context-adaptive variable-length coding.
The extension of a code is the mapping of finite length source sequences to finite length bit strings, that is obtained by concatenating for each symbol of the source sequence the corresponding codeword produced by the original code.
Using terms from formal language theory, the precise mathematical definition is as follows: Let and be two finite sets, called the source and target alphabets, respectively. A code is a total function mapping each symbol from to a sequence of symbols over , and the extension of to a homomorphism of into , which naturally maps each sequence of source symbols to a sequence of target symbols, is referred to as its extension.
Variable-length codes can be strictly nested in order of decreasing generality as non-singular codes, uniquely decodable codes and prefix codes. Prefix codes are always uniquely decodable, and these in turn are always non-singular:
A code is non-singular if each source symbol is mapped to a different non-empty bit string, i.e. the mapping from source symbols to bit strings is injective.
For example, the mapping is not non-singular because both "a" and "b" map to the same bit string "0" ; any extension of this mapping will generate a lossy (non-lossless) coding.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
The class will focus on information-theoretic progress of the last decade. Topics include: Network Information Theory ; Information Measures: definitions, properties, and applications to probabilistic
We propose a new class of efficient decoding algorithms for Reed-Muller (RM) codes over binary-input memoryless channels. The algorithms are based on projecting the code on its cosets, recursively decoding the projected codes (which are lower-order RM code ...
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
Le codage de Huffman est un algorithme de compression de données sans perte. Le codage de Huffman utilise un code à longueur variable pour représenter un symbole de la source (par exemple un caractère dans un fichier). Le code est déterminé à partir d'une estimation des probabilités d'apparition des symboles de source, un code court étant associé aux symboles de source les plus fréquents. Un code de Huffman est optimal au sens de la plus courte longueur pour un codage par symbole, et une distribution de probabilité connue.
La compression de données ou codage de source est l'opération informatique consistant à transformer une suite de bits A en une suite de bits B plus courte pouvant restituer les mêmes informations, ou des informations voisines, en utilisant un algorithme de décompression. C'est une opération de codage qui raccourcit la taille (de transmission, de stockage) des données au prix d'un travail de compression. Celle-ci est l'opération inverse de la décompression.
Locally correctable codes (LCCs) are error correcting codes C : \Sigmak \rightarrow \Sigman which admit local algorithms that correct any individual symbol of a corrupted codeword via a minuscule number of queries. For systematic codes, this notion is stro ...