Ajustement de courbethumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ».
Produit mixteEn géométrie, produit mixte est le nom que prend le déterminant dans un cadre euclidien orienté. Sa valeur absolue s'interprète comme le volume d'un parallélotope. Pour le produit mixte dans un espace euclidien orienté de dimension trois, voir l'article géométrie vectorielle. Soit E un espace euclidien orienté de dimension n. Soit B une base orthonormale directe de E. Le produit mixte de n vecteurs de E est défini par Il ne dépend pas de la base orthonormale directe B choisie.
Force d'Ampèrevignette|Deux fils conducteurs parcourus par un courant électrique de même sens s'attirent mutuellement à travers le champ magnétique qu'ils créent. Le conducteur du haut est parcouru par un courant I2 dans un champ électrique B1, et subit la force de Lorentz F12 (et réciproquement). En magnétostatique, la force d'attraction ou de répulsion entre deux fils conducteurs parcourus par un courant électrique (voir figure) est souvent appelé la force d'Ampère.
Décalage de Bernoulli (langage formel)Un décalage de Bernoulli (en anglais Bernoulli shift) est une transformation opérant sur des mots de longueur infinie, étudiée en dynamique symbolique. Étant donné un alphabet Λ, c'est-à-dire un ensemble fini. Un mot infini est une suite à valeurs dans l'alphabet Λ. Le décalage de Bernoulli est l'application qui décale un mot d'un cran vers la gauche : On peut définir de même les décalages de Bernoulli pour des mots infinis indexés sur et les résultats et propriétés énoncés sont similaires.
Analyse multivectorielleL’analyse géométrique, calcul géométrique, analyse multivectorielle, ou encore calcul multivectoriel, est une branche des mathématiques qui est aux structures d'algèbres géométriques ce que l'analyse vectorielle est aux espaces vectoriels. En substance, l'analyse géométrique considère des fonctions définies sur un espace vectoriel et à valeurs dans l'algèbre géométrique sous-tendue par cet espace, et s'intéresse aux limites exhibées par ces fonctions dans le cadre du calcul infinitésimal.
Georges de RhamGeorges de Rham (né le à Roche (Vaud) et mort le à Lausanne) est un mathématicien et alpiniste suisse connu pour ses contributions à la topologie différentielle. Originaire de Giez (Vaud), fils de Léon, ingénieur, et de Marie, née Dupasquier, il obtient son bachot au gymnase classique de Lausanne (1921), est licencié en sciences de l'université de Lausanne (1925) et docteur en mathématiques de la faculté des sciences de Paris, où il a Elie Cartan comme directeur de thèse (1931).
Faraday rotatorA Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization (such as the axis of linear polarization or the orientation of elliptical polarization) is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations.
Michael FaradayMichael Faraday (Newington, - Hampton Court, ) est un physicien et chimiste britannique, connu pour ses travaux fondamentaux dans le domaine de l'électromagnétisme, l'électrochimie, l'induction électromagnétique, le diamagnétisme et l'électrolyse. Il donne son nom à de multiples lois et phénomènes dans ces domaines, notamment la loi de Faraday (ou Lenz-Faraday) en induction électromagnétique, les lois de Faraday en électrochimie, l'effet Faraday, ou encore à des dispositifs expérimentaux comme la cage de Faraday et la cavité de Faraday.
Leray spectral sequenceIn mathematics, the Leray spectral sequence was a pioneering example in homological algebra, introduced in 1946 by Jean Leray. It is usually seen nowadays as a special case of the Grothendieck spectral sequence. Let be a continuous map of topological spaces, which in particular gives a functor from sheaves of abelian groups on to sheaves of abelian groups on .