Fold (higher-order function)In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value. Typically, a fold is presented with a combining function, a top node of a data structure, and possibly some default values to be used under certain conditions.
Hardness of approximationIn computer science, hardness of approximation is a field that studies the algorithmic complexity of finding near-optimal solutions to optimization problems. Hardness of approximation complements the study of approximation algorithms by proving, for certain problems, a limit on the factors with which their solution can be efficiently approximated. Typically such limits show a factor of approximation beyond which a problem becomes NP-hard, implying that finding a polynomial time approximation for the problem is impossible unless NP=P.
Structured program theoremThe structured program theorem, also called the Böhm–Jacopini theorem, is a result in programming language theory. It states that a class of control-flow graphs (historically called flowcharts in this context) can compute any computable function if it combines subprograms in only three specific ways (control structures).
Algorithme d'Edmonds pour les couplagesEn informatique, plus précisément en théorie des graphes, l'algorithme d'Edmonds pour les couplages (blossom algorithm en anglais), aussi connu sous le nom d'algorithme des fleurs et des pétales est un algorithme pour construire des couplages maximaux sur les graphes. L'algorithme a été développé par Jack Edmonds en 1961, et publié en 1965. Étant donné un graphe quelconque G = (V, E), l'algorithme trouve un couplage M tel que chaque sommet de V est incident à au plus une arête dans E et M est de cardinal maximal.
CatamorphismeDans la théorie des catégories, le concept de catamorphisme (du Grec: = vers le bas; morphisme = forme) dénote l'unique homomorphisme pour une algèbre initiale. Le concept a été appliqué dans la programmation fonctionnelle. Le concept dual est celui d'anamorphisme. En programmation fonctionnelle, un catamorphisme est une généralisation de la fonction fold sur les listes au cadre de types algébriques de données quelconques pouvant être décrit comme des algèbres initiales.
Polynôme chromatiqueEn mathématiques, plus particulièrement en théorie des graphes, le polynôme chromatique d'un graphe est une fonction polynômiale donnant le nombre de colorations distinctes d'un graphe, en fonction du nombre de couleurs autorisées. Il a été introduit d'abord en 1912 pour les graphes planaires, par George David Birkhoff, qui cherchait à démontrer le théorème des quatre couleurs. Ce polynôme a pour racines tous les entiers positifs ou nuls strictement inférieurs au nombre chromatique du graphe et a pour degré l'ordre du graphe.
Trapezoid graphIn graph theory, trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. They are a class of co-comparability graphs that contain interval graphs and permutation graphs as subclasses. A graph is a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of the graph such that two vertices are joined by an edge if and only if the corresponding trapezoids intersect. Trapezoid graphs were introduced by Dagan, Golumbic, and Pinter in 1988.
Undecidable problemIn computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run. A decision problem is a question which, for every input in some infinite set of inputs, answers "yes" or "no"..
Test de primalité AKSLe test de primalité AKS (aussi connu comme le test de primalité Agrawal-Kayal-Saxena et le test cyclotomique AKS) est un algorithme de preuve de primalité déterministe et généraliste (fonctionne pour tous les nombres) publié le par trois scientifiques indiens nommés Manindra Agrawal, Neeraj Kayal et Nitin Saxena (A.K.S). Ce test est le premier en mesure de déterminer la primalité d'un nombre dans un temps polynomial. Ce test a été publié dans un article scientifique intitulé « PRIMES is in P ».
Nesting (computing)In computing science and informatics, nesting is where information is organized in layers, or where objects contain other similar objects. It almost always refers to self-similar or recursive structures in some sense. Nesting can mean: nested calls: using several levels of subroutines recursive calls nested levels of parentheses in arithmetic expressions nested blocks of imperative source code such as nested if-clauses, while-clauses, repeat-until clauses etc.