In graph theory, trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. They are a class of co-comparability graphs that contain interval graphs and permutation graphs as subclasses. A graph is a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of the graph such that two vertices are joined by an edge if and only if the corresponding trapezoids intersect. Trapezoid graphs were introduced by Dagan, Golumbic, and Pinter in 1988. There exists algorithms for chromatic number, weighted independent set, clique cover, and maximum weighted clique.
Given a channel, a pair of two horizontal lines, a trapezoid between these lines is defined by two points on the top and two points on the bottom line. A graph is a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of the graph such that two vertices are joined by an edge if and only if the corresponding trapezoids intersect.
The interval order dimension of a partially ordered set, , is the minimum number d of interval orders P1 ... Pd such that P = P1∩...∩Pd. The incomparability graph of a partially ordered set is the undirected graph where x is adjacent to y in G if and only if x and y are incomparable in P. An undirected graph is a trapezoid graph if and only if it is the incomparability graph of a partial order having interval order dimension at most 2.
The problems of finding maximum cliques and of coloring trapezoid graphs are connected to channel routing problems in VLSI design. Given some labeled terminals on the upper and lower side of a two-sided channel, terminals with the same label will be connected in a common net. This net can be represented by a trapezoid containing the rightmost terminals and leftmost terminals with the same label. Nets may be routed without intersection if and only if the corresponding trapezoids do not intersect. Therefore, the number of layers needed to route the nets without intersection is equal to the graph’s chromatic number.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie des graphes, un graphe d'intersection est un graphe représentant les intersections d'une famille d'ensembles. Plus précisément, pour une famille d'ensembles finie donnée, on associe à chaque ensemble un sommet, et deux sommets sont reliés par une arête si les ensembles ont une intersection non nulle. Beaucoup de familles de graphe sont définies par l'intersection d'ensembles géométriques, par exemple des sphères dans le plan, ou des intervalles sur une droite.
En théorie des graphes, un graphe d'intervalles est le graphe d'intersection d'un ensemble d'intervalles de la droite réelle. Chaque sommet du graphe d'intervalles représente un intervalle de l'ensemble, et une arête relie deux sommets lorsque les deux intervalles correspondants s'intersectent. Etant donnés des intervalles , le graphe d'intervalle correspondant est où et Les graphes d'intervalles sont utilisés pour modéliser les problèmes d'allocation de ressources en recherche opérationnelle et en théorie de la planification.
thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...
Ottawa2023
An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
A clique covering of a graph G is a set of cliques of G such that any edge of G is contained in one of these cliques, and the weight of a clique covering is the sum of the sizes of the cliques in it. The sigma clique cover number scc(G) of a graph G, is de ...