Constante d'Euler-MascheroniEn mathématiques, la constante d'Euler-Mascheroni, ou constante d'Euler, est une constante mathématique définie comme la limite de la différence entre la série harmonique et le logarithme naturel. On la note usuellement (gamma minuscule). La constante d'Euler-Mascheroni γ est définie de la manière suivante : De façon condensée, on obtient : La constante peut également être définie sous la forme explicite d'une série (telle qu'elle fut d'ailleurs introduite par Euler) : La série harmonique diverge, tout comme la suite de terme général ln(n) ; l'existence de cette constante indique que les deux expressions sont asymptotiquement liées.
Bruit numériqueDans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.