Résumé
En mathématiques, la constante d'Euler-Mascheroni, ou constante d'Euler, est une constante mathématique définie comme la limite de la différence entre la série harmonique et le logarithme naturel. On la note usuellement (gamma minuscule). La constante d'Euler-Mascheroni γ est définie de la manière suivante : De façon condensée, on obtient : La constante peut également être définie sous la forme explicite d'une série (telle qu'elle fut d'ailleurs introduite par Euler) : La série harmonique diverge, tout comme la suite de terme général ln(n) ; l'existence de cette constante indique que les deux expressions sont asymptotiquement liées. Les 10 premières décimales de la constante d'Euler-Mascheroni () sont : . Le calcul au moyen de la suite est extrêmement lent et imprécis. Il présente néanmoins un intérêt pédagogique pour se sensibiliser aux problèmes de propagation d'erreurs d'arrondi. En simple précision, pour termes, en sommant dans l'ordre naturel, il y a une erreur sur la , erreur beaucoup plus faible si la somme est effectuée dans l'ordre inverse (du plus petit au plus grand), ou si on utilise l'algorithme de Kahan (voir somme (algorithmique)). Pour un million de termes, l'erreur atteint la dans le sens naturel, et la dans le sens inverse ; par contre, par la méthode de Kahan, on a atteint les 6 décimales exactes. Des méthodes plus efficaces doivent être mises en œuvre pour obtenir une précision suffisante. Par exemple, l'utilisation de la formule d'Euler-Maclaurin permet d'obtenir des développements asymptotiques tels que : Cela permit à Euler d'obtenir 16 décimales de γ. Puis Lorenzo Mascheroni en proposa 32 en 1790, mais avec une erreur à partir de la , erreur corrigée en 1809 par Johann Georg von Soldner. Donald Knuth donne en 1962, Thomas Papanikolaou donne un million de décimales en 1997, P. Dechimel et X. Gourdon en donnent cent millions deux ans plus tard. En 2020, le record vérifié semble être détenu par Seungmin Kim et Ian Cutress, avec plus de 600 milliards de décimales (600 000 000 100 pour être précis) en utilisant y-cruncher.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.