Système d'aide à la décision cliniqueUn système d'aide à la décision clinique (SADC ; en anglais, clinical decision support system ou CDSS) est un système d'aide à la décision pour la santé qui fournit aux cliniciens, au personnel, aux patients ou à d'autres personnes des connaissances et des informations spécifiques à la personne, filtrées ou présentées intelligemment au moment opportun, afin d'améliorer la santé et les soins de santé. Un système d'aide à la décision clinique englobe une variété d'outils pour améliorer la prise de décision dans le flux de travail clinique.
Hierarchy of evidenceA hierarchy of evidence, comprising levels of evidence (LOEs), that is, evidence levels (ELs), is a heuristic used to rank the relative strength of results obtained from experimental research, especially medical research. There is broad agreement on the relative strength of large-scale, epidemiological studies. More than 80 different hierarchies have been proposed for assessing medical evidence. The design of the study (such as a case report for an individual patient or a blinded randomized controlled trial) and the endpoints measured (such as survival or quality of life) affect the strength of the evidence.
Pratique fondée sur les preuvesLa pratique fondée sur les preuves, sur les faits, ou sur des données probantes est une approche interdisciplinaire de la pratique clinique qui a gagné du terrain après son apparition au début des années 1990 par l'intermédiaire du médecin canadien Gordon Guyatt. En 1992, une publication indique : . Elle a commencé en médecine comme médecine factuelle (EBM) et se propage aux professions paramédicales de la santé, domaines éducatifs et autres.
Médecine fondée sur les faitsLa médecine fondée sur les faits (ou médecine fondée sur les données probantes ; voir les autres synonymes) se définit comme . On utilise plus couramment le terme anglais , et parfois les termes médecine fondée sur les preuves ou médecine factuelle. Ces preuves proviennent d'études cliniques systématiques, telles que des essais contrôlés randomisés en double aveugle, des méta-analyses, éventuellement des études transversales ou de suivi bien construites.
Preuve empiriquePreuve empirique, données ou connaissance, aussi appelée expérience des sens, est un terme collectif pour désigner la connaissance ou les sources de la connaissance acquise au moyen des sens, en particulier par l'observation et l'expérimentation. Le terme vient du mot grec ancien pour expérience, ἐμπειρία (empeiría). Après Emmanuel Kant, il est habituel en philosophie d'appeler une connaissance ainsi acquise connaissance a posteriori. Cela en opposition à une connaissance a priori, connaissance accessible à partir de la pensée spéculative seule.
Intelligence artificielle dans la santévignette|Rayon X d'une main, avec calcul automatique de l'âge osseux par un logiciel informatique. L'intelligence artificielle (IA) dans la santé est l'utilisation d'algorithmes et de logiciels pour s'approcher de la cognition humaine dans l'analyse de données médicales complexes. Plus précisément, l'IA est la capacité des algorithmes informatiques à tirer des conclusions sans intervention humaine directe. L'objectif principal des applications des IA dans le domaine de la santé est d'analyser les relations entre, d'une part, la prévention ou les traitements et, d'autre part, l'état de santé des patients.
Biais algorithmiquevignette|Organigramme représentant l'algorithme derrière un moteur de recommandation. Un biais algorithmique est le fait que le résultat d'un algorithme d'apprentissage ne soit pas neutre, loyal ou équitable. Le biais algorithmique peut se produire lorsque les données utilisées pour entraîner un algorithme d'apprentissage automatique reflètent les valeurs implicites des humains impliqués dans la collecte, la sélection, ou l'utilisation de ces données.
EvaluationIn common usage, evaluation is a systematic determination and assessment of a subject's merit, worth and significance, using criteria governed by a set of standards. It can assist an organization, program, design, project or any other intervention or initiative to assess any aim, realisable concept/proposal, or any alternative, to help in decision-making; or to ascertain the degree of achievement or value in regard to the aim and objectives and results of any such action that has been completed.
Automated decision-makingAutomated decision-making (ADM) involves the use of data, machines and algorithms to make decisions in a range of contexts, including public administration, business, health, education, law, employment, transport, media and entertainment, with varying degrees of human oversight or intervention. ADM involves large-scale data from a range of sources, such as databases, text, social media, sensors, images or speech, that is processed using various technologies including computer software, algorithms, machine learning, natural language processing, artificial intelligence, augmented intelligence and robotics.
Impact evaluationImpact evaluation assesses the changes that can be attributed to a particular intervention, such as a project, program or policy, both the intended ones, as well as ideally the unintended ones. In contrast to outcome monitoring, which examines whether targets have been achieved, impact evaluation is structured to answer the question: how would outcomes such as participants' well-being have changed if the intervention had not been undertaken? This involves counterfactual analysis, that is, "a comparison between what actually happened and what would have happened in the absence of the intervention.