vignette|Organigramme représentant l'algorithme derrière un moteur de recommandation.
Un biais algorithmique est le fait que le résultat d'un algorithme d'apprentissage ne soit pas neutre, loyal ou équitable.
Le biais algorithmique peut se produire lorsque les données utilisées pour entraîner un algorithme d'apprentissage automatique reflètent les valeurs implicites des humains impliqués dans la collecte, la sélection, ou l'utilisation de ces données. Les biais algorithmiques ont été identifiés et critiqués pour leur impact sur les résultats des moteurs de recherche, les services de réseautage social, le respect de la vie privée, et le profilage racial. Dans les résultats de recherche, ce biais peut créer des résultats reflétant des biais racistes, sexistes ou d'autres biais sociaux ou culturels, malgré la neutralité supposée des données. Un exemple concret est celui des interprètes en ligne qui traduisent systématiquement le terme anglais "nurse" (neutre) en "infirmière" (féminin) et le terme "doctor" (neutre) en "docteur" (masculin). L'étude des biais algorithmiques s'intéresse particulièrement aux algorithmes qui reflètent une discrimination « systématique et injuste ».
Le biais algorithmique n'est pas nécessairement une volonté délibérée des concepteurs de l'algorithme de tromper les utilisateurs. Il est d'autant plus important pour ceux-ci d'en avoir conscience que l'usage d'un algorithme biaisé que l'on suppose objectif peut fortement influencer leurs opinions. Cette problématique pose la question du manque de rétrocontrôle des concepteurs d'algorithmes sur leur création déjà soulevée par les ingénieurs des grandes plateformes de l'Internet.
Un algorithme est biaisé lorsque son résultat n'est pas neutre, loyal ou équitable. Cette définition repose donc sur trois notions : la neutralité, la loyauté et l'équité. Les biais algorithmiques peuvent conduire à des situations de discrimination.
Pour éviter que les algorithmes soient biaisés, certaines recherches comme visent à développer des algorithmes qui respectent des principes d'équité.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Automated decision-making (ADM) involves the use of data, machines and algorithms to make decisions in a range of contexts, including public administration, business, health, education, law, employment, transport, media and entertainment, with varying degrees of human oversight or intervention. ADM involves large-scale data from a range of sources, such as databases, text, social media, sensors, images or speech, that is processed using various technologies including computer software, algorithms, machine learning, natural language processing, artificial intelligence, augmented intelligence and robotics.
ChatGPT () est un prototype d'agent conversationnel utilisant l'intelligence artificielle, développé par OpenAI et spécialisé dans le dialogue. L'agent conversationnel de ChatGPT repose sur les technologies du traitement automatique des langues (NLP), des grands modèles de langage (LLM) et des chatbots. Il est issu du modèle de langage GPT d'OpenAI, et est affiné en continu grâce à l'utilisation de techniques d'apprentissage supervisé et d'apprentissage par renforcement.
L'éthique de l'intelligence artificielle est le domaine de l' propre aux robots et autres entités artificiellement intelligents. Il est généralement divisé en roboéthique, qui se préoccupe de l'éthique humaine pour guider la conception, la construction et l'utilisation des êtres artificiellement intelligents, et l', préoccupée par le comportement moral des agents moraux artificiels. Pour l'aspect philosophique de l'intelligence artificielle, voir Philosophie de l'intelligence artificielle.
This master course enables students to sharpen their proficiency in tackling ethical and legal challenges linked to Artificial Intelligence (AI). Students acquire the competence to define AI and ident
Explore les implications éthiques du déploiement d'algorithmes d'apprentissage automatique et souligne l'importance de l'équité dans les processus décisionnels.
Explore les préjugés et l'équité dans l'apprentissage automatique, en mettant l'accent sur les décisions de conception responsables et les implications éthiques des systèmes de ML.
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
EPFL2024
, ,
We propose an interpretable model to score the subjective bias present in documents, based only on their textual content. Our model is trained on pairs of revisions of the same Wikipedia article, where one version is more biased than the other. Although pr ...
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...