Machine Learning Security in Industry: A Quantitative Survey
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learni ...
Machine Learning (ML) is on the rise in medicine, promising improved diagnostic, therapeutic and prognostic clinical tools. While these technological innovations are bound to transform health care, they also bring new ethical concerns to the forefront. One ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
Visual salient object detection (SOD) aims at finding the salient object(s) that attract human attention, while camouflaged object detection (COD) on the contrary intends to discover the camouflaged object(s) that hidden in the surrounding. In this paper, ...
The objective of meta-learning is to exploit knowledge obtained from observed tasks to improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained with a larger number of observed tasks and with a larger amount of ...
Effective caching is crucial for performance of modern-day computing systems. A key optimization problem arising in caching – which item to evict to make room for a new item – cannot be optimally solved without knowing the future. There are many classical ...
Algorithms are now routinely used to make consequential decisions that affect human lives. Examples include college admissions, medical interventions or law enforcement. While algorithms empower us to harness all information hidden in vast amounts of data, ...
We analyze the influence of adversarial training on the loss landscape of machine learning models. To this end, we first provide analytical studies of the properties of adversarial loss functions under different adversarial budgets. We then demonstrate tha ...
Modern machine learning tools have shown promise in detecting symptoms of neurological disorders. However, current approaches typically train a unique classifier for each subject. This subject-specific training scheme requires long labeled recordings from ...
Innovations in statistical technology, in functions including credit-screening, have raised concerns about distributional impacts across categories such as race. Theoretically, distributional effects of better statistical technology can come from greater f ...