Chimie numériqueLa chimie numérique ou chimie informatique, parfois aussi chimie computationnelle, est une branche de la chimie et de la physico-chimie qui utilise les lois de la chimie théorique exploitées dans des programmes informatiques spécifiques afin de calculer structures et propriétés d'objets chimiques tels que les molécules, les solides, les agrégats atomiques (ou clusters), les surfaces, etc., en appliquant autant que possible ces programmes à des problèmes chimiques réels.
Polymorphisme (informatique)En informatique et en théorie des types, le polymorphisme, du grec ancien polús (plusieurs) et morphê (forme), est le concept consistant à fournir une interface unique à des entités pouvant avoir différents types. Par exemple, des opérations telles que la multiplication peuvent ainsi être étendues à des scalaires aux vecteurs ou aux matrices, l'addition, des scalaires aux fonctions ou aux chaînes de caractères, etc.
Amarrage (moléculaire)vignette|Petite molécule amarrée à une protéine. Dans le domaine de la modélisation moléculaire, l’amarrage (en anglais docking) est une méthode qui calcule l'orientation préférée d'une molécule vers une seconde lorsqu'elles sont liées pour former un complexe stable. Connaître l'orientation préférée sert à prévoir la solidité de l'union entre deux molécules. Les associations entre des molécules d'importance biologique, telles que les protéines, les acides nucléiques, les glucides et les matières grasses jouent un rôle essentiel dans la transduction de signal.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Spectral leakageThe Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling, for instance, produces leakage, which we call aliases of the original spectral component.
Ring systemA ring system is a disc or ring, orbiting an astronomical object, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets like Saturn. A ring system around a planet is also known as a planetary ring system. The most prominent and most famous planetary rings in the Solar System are those around Saturn, but the other three giant planets (Jupiter, Uranus, and Neptune) also have ring systems.
Linus PaulingLinus Carl Pauling ( à Portland, Oregon, États-Unis - à Big Sur, Californie) est un chimiste et physicien américain. Il fut l'un des premiers chimistes quantiques, et reçut le prix Nobel de chimie en 1954 pour ses travaux décrivant la nature de la liaison chimique. Il publie en 1939 un ouvrage majeur La Nature de la liaison chimique (The Nature of the Chemical Bond) dans lequel il développe le concept d'hybridation des orbitales atomiques.
Transformée de WalshEn mathématiques, et plus précisément en analyse harmonique, la transformée de Walsh est l'analogue de la transformée de Fourier discrète. Elle opère sur un corps fini à la place des nombres complexes. Elle est utilisée en théorie de l'information à la fois pour les codes linéaires et la cryptographie. Analyse harmonique sur un groupe abélien fini Le contexte est identique à celui de l'analyse harmonique classique d'un groupe abélien fini.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.