Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
DeepDreamthumb|250px| Photographie avant et après un traitement partiel par DeepDream. thumb| Étape avancée du traitement d'une photographie de trois hommes. DeepDream est un programme de vision par ordinateur créé par Google qui utilise un réseau neuronal convolutif pour trouver et renforcer des structures dans des images en utilisant des paréidolies créées par algorithme, donnant ainsi une apparence hallucinogène à ces images. thumb|left|Photographie de ciel nuageux ; à droite, sa transformation par DeepDream.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Teacher educationTeacher education or teacher training refers to programs, policies, procedures, and provision designed to equip (prospective) teachers with the knowledge, attitudes, behaviors, approaches, methodologies and skills they require to perform their tasks effectively in the classroom, school, and wider community. The professionals who engage in training the prospective teachers are called teacher educators (or, in some contexts, teacher trainers). There is a longstanding and ongoing debate about the most appropriate term to describe these activities.
EnseignantUn enseignant est une personne chargée de transmettre des connaissances ou méthodes de raisonnement à autrui dans le cadre d'une formation générale ou d'une formation spécifique à une matière, un domaine ou une discipline scolaire. Le terme « enseignant » désigne la personne qui enseigne aux élèves (en primaire et secondaire). Dans certains contextes, les enseignants peuvent également être appelés « professeurs ». En France, le corps des professeurs des écoles a remplacé celui des instituteurs dans le primaire.
Mesure stéréoscopiqueLa stéréovision ou mesure stéréoscopique est une méthode de mesure qui consiste à se servir de la prise d'images (photographiques ou numériques) prises de différents points de vue, pour déterminer les dimensions, les formes ou les positions d'objets. Pour cela on utilise : soit des appareils photographiques étalonnés utilisant des films argentiques plans et stables dimensionnellement ou des détecteurs C.C.D à haute résolution pour des mesures statiques ; soit des caméras (film ou CCD) si des mesures dynamiques sont nécessaires (vidéogrammétrie).
Stimulus modalityStimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.