Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Recent advances in ultrafast pump-probe spectroscopy provide access to hidden phases of correlated matter, including light-induced superconducting states. The theoretical understanding of these nonequilibrium phases remains limited, particularly for correlated materials on frustrated lattices. Here we demonstrate that photodoping can induce a new type of chiral superconducting phase in frustrated Mott insulators by forming a condensate of doublons and holons. This metastable phase features a spatially varying order parameter with a 120 degrees phase twist which breaks both time-reversal and inversion symmetry. Under an external electric pulse, the 120 degrees chiral superconducting state can exhibit a second-order supercurrent perpendicular to the field in addition to a first-order parallel response, similar to a nonlinear anomalous Hall effect. Light-induced artificial gauge fields may be used to further stabilize this hidden phase. The presented results demonstrate that the light-induced superconducting state on a triangular lattice is of chiral nature and exhibits distinguishing properties which can be revealed in pump-probe experiments. The general mechanism applies to Mott insulators on various frustrated lattices and is tunable by optical means.
Benoît Guilhem Michel Binh Truc
,