Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only nearest-neighbor antiferromagnetic interactions are present. Here, we contest this hypothesis with an extensive numerical investigation using both exact diagonalization and complementary variational techniques. Specifically, we employ a resonating-valence-bond-like, manyvariable, Monte Carlo ansatz and convolutional neural network quantum states for (variational) calculations with up to 4 x 43 and 4 x 33 spins, respectively. We demonstrate that these techniques yield consistent results, allowing for reliable extrapolations to the thermodynamic limit. We consider the (2; j2/j1) parameter space, with j2, j1 being nearest and next-to-nearest neighbor interactions and 2 the XXZ interaction anisotropy. Our main results are (1) the determination of the phase transition between the putative spin-liquid phase and the neighboring magnetically ordered phase and (2) a careful characterization of the ground state in terms of symmetry-breaking tendencies. We find clear indications of a dimer order with spontaneously broken inversion and rotational symmetry, calling the scenario of a featureless quantum spin liquid into question. Our work showcases how many-variable variational techniques can be used to make progress in answering challenging questions about three-dimensional frustrated quantum magnets.