Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Tensor Processing Unitvignette|Un Tensor Processing Unit 3.0 datant de mai 2016 Un Tensor Processing Unit (TPU, unité de traitement de tenseur) est un circuit intégré spécifique pour une application (ASIC), développé par Google spécifiquement pour accélérer les systèmes d'intelligence artificielle par réseaux de neurones. Les TPU ont été annoncés en 2016 au Google I/O, lorsque la société a déclaré les utiliser dans leurs centres de données depuis plus d'un an.
TensorFlowTensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
Technologie portablethumb|Montres connectées Une technologie portable ou technologie mettable (de l'anglais wearable technology, appelée également habitronique) est un vêtement ou un accessoire comportant des éléments informatiques et électroniques avancés. Les technologies portables incluent notamment des textiles (chandails, gants, Hexoskin, maillots de bain connectés, pansements connectés), des lunettes (Google Glass), des montres connectées (Pebble Watch, Apple Watch) et des bijoux.
Wearable computerA wearable computer, also known as a body-borne computer, is a computing device worn on the body. The definition of 'wearable computer' may be narrow or broad, extending to smartphones or even ordinary wristwatches. Wearables may be for general use, in which case they are just a particularly small example of mobile computing. Alternatively, they may be for specialized purposes such as fitness trackers. They may incorporate special sensors such as accelerometers, heart rate monitors, or on the more advanced side, electrocardiogram (ECG) and blood oxygen saturation (SpO2) monitors.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Wear OSWear OS (anciennement Android Wear) est une version du système d'exploitation mobile Android de Google spécialement conçue pour faire fonctionner les technologies portables. Son lancement est annoncé le par Sundar Pichai, en collaboration avec les constructeurs Asus, Broadcom, Fossil, HTC, Intel, LG, MediaTek, Imagination Technologies, Motorola, Qualcomm et Samsung. En parallèle, trois premiers modèles de montres intelligentes fonctionnant sur le nouveau système d'exploitation sont annoncés : la Moto 360, la Samsung Gear live et la LG G watch.