Generalised Howe duality and injectivity of induction: the symplectic case
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We study differential equations that lead to extremal points in symplectic pseudospectra. In a two-level approach, where on the inner level we compute extremizers of the symplectic epsilon-pseudospectrum for a given epsilon and on the outer level we optimi ...
The goal of this paper is to derive the Hamiltonian structure of polarized and magnetized Euler-Maxwell fluids by reduction of the canonical symplectic form on phase space, and to generalize the dynamics to the nonabelian case. The Hamiltonian function we ...
In [GT], Goldin and Tolman extend some ideas from Schubert calculus to the more general setting of Hamiltonian torus actions on compact symplectic manifolds with isolated fixed points. (See also [Kn99,Kn08].) The main goal of this paper is to build on this ...
Strongly torsion generated groups are those with a single normal generator, of arbitrary finite order. They are useful for realizing sequences of abelian groups as homology groups. Known examples include stable alternating groups and stable groups generate ...
The underlying goal of this Master's thesis is of laying down, in so far as possible, the foundations for later work in Geometric Stochastic Mechanics. The first part is a presentation of symplectic reduction, going through the momentum map and culminating ...
In a region D in R-2 or R-3, the classical Euler equation for the regular motion of an inviscid and incompressible fluid of constant density is given by partial derivative(t)v + (v . del(x))v = -del(xP), div(x)v = 0, where v(t, x) is the velocity of the pa ...
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonloca ...
The theory of discrete variational mechanics has its roots in the optimal control literature of the 1960's. The past ten years have seen a major development of discrete variational mechanics and corresponding numerical integrators, due largely to pioneerin ...
Let Q denote a smooth manifold acted upon smoothly by a Lie group G. The G-action lifts to an action on the total space TQ of the cotangent bundle of Q and hence on the standard symplectic Poisson algebra of smooth functions on TQ. The Poisson algebra of ...
Let n > 2 be even; r >= 1 be an integer; 0 < alpha < 1; Omega be a bounded, connected, smooth, open set in R-n; and nu be its exterior unit normal. Let f, g is an element of C-r,C-alpha((Omega) over bar; Lambda(2)) be two symplectic forms (i.e., closed and ...