Neural Distributed Image Compression with Cross-Attention Feature Alignment
Publications associées (48)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
To obtain a more complete understanding of material microstructure at the nanoscale and to gain profound insights into their properties, there is a growing need for more efficient and precise methods that can streamline the process of 3D imaging using a tr ...
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
Deep neural networks (DNNs) have achieved great success in image classification and recognition compared to previous methods. However, recent works have reported that DNNs are very vulnerable to adversarial examples that are intentionally generated to misl ...
In Bourlard and Kamp (Biol Cybern 59(4):291-294, 1998), it was theoretically proven that autoencoders (AE) with single hidden layer (previously called "auto-associative multilayer perceptrons") were, in the best case, implementing singular value decomposit ...
Stereo confidence estimation aims to estimate the reliability of the estimated disparity by stereo matching. Different from the previous methods that exploit the limited input modality, we present a novel method that estimates confidence map of an initial ...
In digital imaging, especially in the process of data acquisition and transmission, images are often affected by impulsive noise. Therefore, it is essential to remove impulsive noise from images before any further processing. Due to the remarkable performa ...