Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Hallucination (intelligence artificielle)Dans le domaine de l’intelligence artificielle, une hallucination est une réponse manifestement fausse qui est présentée comme un fait certain. Par exemple, un chatbot qui invente un chiffre d’affaires pour une entreprise sans avoir de données à ce sujet. Ce phénomène est appelé « hallucination » par analogie avec le phénomène de l’hallucination en psychologie humaine. Le terme hallucination en intelligence artificielle a pris de l'importance vers 2022 parallèlement au déploiement des modèles de langage basés sur l'apprentissage profond tels que ChatGPT.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Federal enterprise architectureA federal enterprise architecture framework (FEAF) is the U.S. reference enterprise architecture of a federal government. It provides a common approach for the integration of strategic, business and technology management as part of organization design and performance improvement. The most familiar federal enterprise architecture is the enterprise architecture of the Federal government of the United States, the U.S. "Federal Enterprise Architecture" (FEA) and the corresponding U.S. "Federal Enterprise Architecture Framework" (FEAF).
Véhicule autonomevignette|Le Chrysler Pacifica équipé de la technologie autonome Waymo. vignette|droite|Voiture autonome dont on distingue certains capteurs sur le toit. vignette|Une voiture sans pilote Robocar en présentation au grand prix de Formule E de 2017 à New York. vignette|Les voitures de Sber Autotech sont formées sur le terrain d'entraînement. Un véhicule autonome, véhicule automatisé, véhicule à délégation de conduite ou véhicule entièrement automatisé est un véhicule automobile capable de rouler sans intervention d'un conducteur.
Business architectureIn the business sector, business architecture is a discipline that "represents holistic, multidimensional business views of: capabilities, end‐to‐end value delivery, information, and organizational structure; and the relationships among these business views and strategies, products, policies, initiatives, and stakeholders." In application, business architecture provides a bridge between an enterprise business model and enterprise strategy on one side, and the business functionality of the enterprise on the other side.
Domaine public (propriété intellectuelle)En droit de la propriété intellectuelle, le domaine public désigne l'ensemble des œuvres de l'esprit et des connaissances dont l'usage n'est pas ou n'est plus restreint par la loi. Cela peut être par exemple : un savoir sur lequel aucun monopole n'est accordé, comme une formule mathématique ; une œuvre de l'esprit qui n'est pas protégée par le droit d'auteur, comme le discours d'un parlementaire ; une œuvre de l'esprit qui n'est plus protégée par le droit d'auteur, après expiration ; un brevet qui a expiré.