Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Surapprentissagevignette|300x300px|La ligne verte représente un modèle surappris et la ligne noire représente un modèle régulier. La ligne verte classifie trop parfaitement les données d'entrainement, elle généralise mal et donnera de mauvaises prévisions futures avec de nouvelles données. Le modèle vert est donc finalement moins bon que le noir. En statistique, le surapprentissage, ou sur-ajustement, ou encore surinterprétation (en anglais « overfitting »), est une analyse statistique qui correspond trop précisément à une collection particulière d'un ensemble de données.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Calcul par réservoirLe calcul par réservoir (de l'anglais reservoir computing) est un cadre de calcul dérivé de la théorie des réseaux de neurones récurrents qui mappe un ou plusieurs signaux d'entrée dans des espaces de calcul de dimension supérieure grâce à la dynamique d'un système fixe et non linéaire appelé réservoir . Une fois que le signal d'entrée est introduit dans le réservoir, qui est traité comme une « boîte noire », un simple mécanisme de lecture est entraîné pour lire l'état du réservoir et le mapper à la sortie souhaitée.
Auto-encodeurUn auto-encodeur (autoencodeur), ou auto-associateur est un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Véhicule autonomevignette|Le Chrysler Pacifica équipé de la technologie autonome Waymo. vignette|droite|Voiture autonome dont on distingue certains capteurs sur le toit. vignette|Une voiture sans pilote Robocar en présentation au grand prix de Formule E de 2017 à New York. vignette|Les voitures de Sber Autotech sont formées sur le terrain d'entraînement. Un véhicule autonome, véhicule automatisé, véhicule à délégation de conduite ou véhicule entièrement automatisé est un véhicule automobile capable de rouler sans intervention d'un conducteur.
Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
Vehicular automationVehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent systems to assist the operator of a vehicle (car, aircraft, watercraft, or otherwise). These features and the vehicles employing them may be labeled as intelligent or smart. A vehicle using automation for difficult tasks, especially navigation, to ease but not entirely replace human input, may be referred to as semi-autonomous, whereas a vehicle relying solely on automation is called robotic or autonomous.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.