Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Superoxide radicals (O-2(center dot-)) have been suggested as an important chain carrier in the radical chain reaction that promotes ozone (O-3) decomposition to hydroxyl radicals ((OH)-O-center dot) during ozonation. However, due to the difficulty in measuring transient O-2(center dot-) concentrations, this hypothesis has not been verified under realistic ozonation conditions during water treatment. In this study, a probe compound was used in combination with kinetic modeling to evaluate the role of O-2(center dot-) for O-3 decomposition during ozonation of synthetic solutions with model promotors and inhibitors (methanol and acetate or tert-butanol) and natural waters (one groundwater and two surface waters). By measurement of the abatement of spiked tetrachloromethane (as a O-2(center dot-) probe), the O-2(center dot-) exposure during ozonation was determined. Based on the measured O-2(center dot-) exposures, the relative contribution of O-2(center dot-) to O-3 decomposition, in comparison to OH, (OH)-O-center dot, and dissolved organic matter (DOM), was quantitatively evaluated using kinetic modeling. The results show that water compositions (e.g., the concentration of promotors and inhibitors, and the O-3 reactivity of DOM) have a considerable effect on the extent of the O-2(center dot-)-promoted radical chain reaction during ozonation. In general, the reaction with O-2(center dot-) accounted for similar to 59-70% and similar to 45-52% of the overall O-3 decomposition during ozonation of the selected synthetic solutions and natural waters, respectively. This confirms that O-2(center dot-) plays a critical role in promoting O-3 decomposition to similar to OH. Overall, this study provides new insights on the controlling factors for ozone stability during ozonation processes.