Graph embeddingIn topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Problème de l'isomorphisme de sous-graphesvignette|Le problème est de savoir si un graphe contient un autre graphe comme sous-graphe. En informatique théorique, le problème de l'isomorphisme de sous-graphes est le problème de décision suivant : étant donnés deux graphes G et H, déterminer si G contient un sous-graphe isomorphe à H. C'est une généralisation du problème de l'isomorphisme de graphes. Soient et deux graphes. Le problème de décision de l'isomorphisme de sous-graphe est : « Est-ce qu'il existe un sous-graphe , avec et , tel qu'il existe une bijection telle que ? ».
Fractional matchingIn graph theory, a fractional matching is a generalization of a matching in which, intuitively, each vertex may be broken into fractions that are matched to different neighbor vertices. Given a graph G = (V, E), a fractional matching in G is a function that assigns, to each edge e in E, a fraction f(e) in [0, 1], such that for every vertex v in V, the sum of fractions of edges adjacent to v is at most 1: A matching in the traditional sense is a special case of a fractional matching, in which the fraction of every edge is either 0 or 1: f(e) = 1 if e is in the matching, and f(e) = 0 if it is not.
Graphe des cyclesEn mathématiques, et plus particulièrement en théorie des groupes, le graphe des cycles d'un groupe représente l'ensemble des cycles de ce groupe, ce qui est particulièrement utile pour visualiser la structure des petits groupes finis. Pour les groupes ayant moins de 16 éléments, le graphe des cycles détermine le groupe à isomorphisme près. Un cycle est l'ensemble des puissances d'un élément donné du groupe ; a, la n-ième puissance de l'élément a, est définie comme le produit de a par lui-même n fois (avec les conventions a = a et a = e, l'élément neutre du groupe).
Giant componentIn network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices. More precisely, in graphs drawn randomly from a probability distribution over arbitrarily large graphs, a giant component is a connected component whose fraction of the overall number of vertices is bounded away from zero. In sufficiently dense graphs distributed according to the Erdős–Rényi model, a giant component exists with high probability.
Graph canonizationIn graph theory, a branch of mathematics, graph canonization is the problem of finding a canonical form of a given graph G. A canonical form is a labeled graph Canon(G) that is isomorphic to G, such that every graph that is isomorphic to G has the same canonical form as G. Thus, from a solution to the graph canonization problem, one could also solve the problem of graph isomorphism: to test whether two graphs G and H are isomorphic, compute their canonical forms Canon(G) and Canon(H), and test whether these two canonical forms are identical.