Piano électriqueLe piano électrique est un instrument à clavier amplifié électriquement par micros électromagnétiques, très populaire dans les années 1960 et 1970. Le premier piano électrique a été construit par C. Bechstein Pianofortefabrik AG Berlin en 1931, c'était un piano à queue équipé de micros électromagnétiques du nom de . Cependant, c'est Harold Burroughs Rhodes, pendant la Seconde Guerre mondiale, qui a créé l'instrument qui a révolutionné le genre.
Musique romantiquethumb|upright=0.8|Berlioz par Signol, 1832. thumb|upright=0.8|Schubert par , 1825. thumb|upright=0.8|Mendelssohn par Eduard Magnus, 1846. thumb|upright=0.8|Schumann par Josef Kriehuber, 1839. thumb|upright=0.8|Chopin par Delacroix, 1838. thumb|upright=0.8|Paganini par Ingres, 1819. L'expression musique classique romantique désigne un type de musique qui domine en Europe tout au long du .
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Gestion des donnéesLa gestion des données est une discipline de gestion qui tend à valoriser les données en tant que ressources numériques. La gestion des données permet d'envisager le développement d'architectures, de réglementations, de pratiques et de procédures qui gèrent correctement les besoins des organismes sur le plan de tout le cycle de vie des données. Les données sont, avec les traitements, l'un des deux aspects des systèmes d'information traditionnellement identifiés, et l'un ne peut aller sans l'autre pour un management du système d'information cohérent.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
Convergence de mesuresEn mathématiques, plus spécifiquement en théorie des mesures, il existe différentes notions de convergence de mesures . Pour un sens général intuitif de ce que l'on entend par convergence en mesure, considérons une suite de mesures sur un espace, partageant une collection commune d'ensembles mesurables. Une telle suite pourrait représenter une tentative de construire des approximations «de mieux en mieux» d'une mesure souhaitée qui est difficile à obtenir directement.
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.
Essential extensionIn mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N (or N is said to be an essential submodule or large submodule of M) if for every submodule H of M, implies that As a special case, an essential left ideal of R is a left ideal that is essential as a submodule of the left module RR. The left ideal has non-zero intersection with any non-zero left ideal of R. Analogously, an essential right ideal is exactly an essential submodule of the right R module RR.
Serial moduleIn abstract algebra, a uniserial module M is a module over a ring R, whose submodules are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M, either or . A module is called a serial module if it is a direct sum of uniserial modules. A ring R is called a right uniserial ring if it is uniserial as a right module over itself, and likewise called a right serial ring if it is a right serial module over itself.