Level of measurementLevel of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio. This framework of distinguishing levels of measurement originated in psychology and has since had a complex history, being adopted and extended in some disciplines and by some scholars, and criticized or rejected by others.
Length measurementLength measurement, distance measurement, or range measurement (ranging) refers to the many ways in which length, distance, or range can be measured. The most commonly used approaches are the rulers, followed by transit-time methods and the interferometer methods based upon the speed of light. For objects such as crystals and diffraction gratings, diffraction is used with X-rays and electron beams. Measurement techniques for three-dimensional structures very small in every dimension use specialized instruments such as ion microscopy coupled with intensive computer modeling.
Incertitude de mesurevignette|Mesurage avec une colonne de mesure. En métrologie, une incertitude de mesure liée à un mesurage (d'après le Bureau international des poids et mesures). Elle est considérée comme une dispersion et fait appel à des notions de statistique. Les causes de cette dispersion, liées à différents facteurs, influent sur le résultat de mesurage, donc sur l'incertitude et in fine sur la qualité de la mesure. Elle comprend de nombreuses composantes qui sont évaluées de deux façons différentes : certaines par une analyse statistique, d'autres par d'autres moyens.
Complete latticeIn mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.
Expression régulièrevignette|Stephen Cole Kleene, dont les travaux ont fondé le concept d'expression régulière. En informatique, une expression régulière ou expression rationnelle ou expression normale ou motif est une chaîne de caractères qui décrit, selon une syntaxe précise, un ensemble de chaînes de caractères possibles. Les expressions régulières sont également appelées regex (un mot-valise formé depuis l'anglais regular expression). Les expressions rationnelles sont issues des théories mathématiques des langages formels des années 1940.
Holonomic functionIn mathematics, and more specifically in analysis, a holonomic function is a smooth function of several variables that is a solution of a system of linear homogeneous differential equations with polynomial coefficients and satisfies a suitable dimension condition in terms of D-modules theory. More precisely, a holonomic function is an element of a holonomic module of smooth functions. Holonomic functions can also be described as differentiably finite functions, also known as D-finite functions.
Parsing expression grammarIn computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG.
Constante fondamentaleEn physique, la notion de constante fondamentale désigne une grandeur fixe, intervenant dans les équations de la physique, qui ne peut pas être déterminée par une théorie sous-jacente dont les équations seraient un cas limite ou une théorie effective. C'est donc un statut provisoire, car il se peut qu'une théorie plus fondamentale apparaisse qui permette la détermination d'une constante « fondamentale » pour un certain niveau de théorie effective.
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.