Mesure physiqueLa mesure physique est l'action de déterminer la ou les valeurs d'une grandeur (longueur, capacité), par comparaison avec une grandeur constante de même espèce prise comme terme de référence (étalon ou unité). Selon la définition canonique : La mesure physique vise à l'objectivité et à la reproductibilité. La comparaison est numérique ; on exprime une caractéristique bien définie de l'objet par un nombre rationnel multipliant l'unité.
Nuclear reactor physicsNuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons.
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Traitement du combustible nucléaire uséLe traitement du combustible nucléaire usé (anciennement retraitement des combustibles usés) regroupe plusieurs procédés mécaniques et chimiques de traitement du combustible nucléaire après utilisation en réacteur, visant à séparer des éléments potentiellement réutilisables tels que l'uranium et le plutonium, mais également les « actinides mineurs », des produits de fission contenus dans le combustible nucléaire irradié. Le traitement du combustible usé est l'une des étapes du cycle du combustible nucléaire.
Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Fonction hypergéométrique confluentevignette|Fonction hypergéométrique confluente. La fonction hypergéométrique confluente (ou fonction de Kummer) est : où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : Les fonctions de Bessel, la fonction gamma incomplète, les fonctions génératrices des moments des distributions bêta et bêta prime, les fonctions cylindre parabolique ou encore les polynômes d'Hermite et les polynômes de Laguerre peuvent être représentés à l'aide de fonctions hypergéométriques confluentes (cf.
Generalized hypergeometric functionIn mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series.
Nombres de FeigenbaumEn mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la théorie du chaos. vignette|droite|Exemple de diagramme de bifurcation (en abscisse, r désigne le paramètre μ). Les diagrammes de bifurcation concernent les valeurs limites prises par les suites de type où f est une fonction réelle, définie positive et trois fois dérivable sur [0, 1] et possédant un maximum unique sur cet intervalle (c’est-à-dire sans maximum relatif), noté f.
Système d'unitésUn système d'unités est un ensemble d'unités de mesure couramment employées dans des domaines d'activité humaine, présentant des caractères de cohérence qui en facilitent l'usage entre les organisations d'une société humaine. Historiquement, les systèmes d'unités ont été d'une grande importance, soumis à réglementation et définis dans des domaines scientifiques et commerciaux. Depuis que les civilisations se sont développées, les hommes ont cherché à développer des systèmes d'unités cohérents, afin de faciliter les échanges, tant scientifiques, que culturels, économiques, et financiers.
Grandeur sans dimensionUne grandeur sans dimension ou adimensionnelle est une grandeur physique dont la dimension vaut , ce qui revient à dire que tous ses exposants dimensionnels sont nuls : Une grandeur adimensionelle peut être obtenue à partir d'une combinaison de grandeurs dimensionnées, dont l'analyse dimensionnelle permet de vérifier la dimension. Une grandeur adimensionelle peut cependant posséder une unité, comme par exemple les angles dont l'unité est le radian. D'autres exemples de grandeurs adimensionnées sont l'indice de réfraction ou la densité.