Concept

Holonomic function

In mathematics, and more specifically in analysis, a holonomic function is a smooth function of several variables that is a solution of a system of linear homogeneous differential equations with polynomial coefficients and satisfies a suitable dimension condition in terms of D-modules theory. More precisely, a holonomic function is an element of a holonomic module of smooth functions. Holonomic functions can also be described as differentiably finite functions, also known as D-finite functions. When a power series in the variables is the Taylor expansion of a holonomic function, the sequence of its coefficients, in one or several indices, is also called holonomic. Holonomic sequences are also called P-recursive sequences: they are defined recursively by multivariate recurrences satisfied by the whole sequence and by suitable specializations of it. The situation simplifies in the univariate case: any univariate sequence that satisfies a linear homogeneous recurrence relation with polynomial coefficients, or equivalently a linear homogeneous difference equation with polynomial coefficients, is holonomic. Let be a field of characteristic 0 (for example, or ). A function is called D-finite (or holonomic) if there exist polynomials such that holds for all x. This can also be written as where and is the differential operator that maps to . is called an annihilating operator of f (the annihilating operators of form an ideal in the ring , called the annihilator of ). The quantity r is called the order of the annihilating operator. By extension, the holonomic function f is said to be of order r when an annihilating operator of such order exists. A sequence is called P-recursive (or holonomic) if there exist polynomials such that holds for all n. This can also be written as where and the shift operator that maps to . is called an annihilating operator of c (the annihilating operators of form an ideal in the ring , called the annihilator of ). The quantity r is called the order of the annihilating operator.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
Séances de cours associées (35)
Domaine défini par des ligues de niveau
Explore les domaines définis par des ligues de niveau et des intégrales doubles sur ces domaines.
Lebesgue Integral : Propriétés et Convergence
Couvre l'intégrale, les propriétés et la convergence des fonctions de Lebesgue.
Taylor Expansion et fonctions convexes
Explore l'expansion de Taylor, les fonctions convexes et la continuité de Lipschitz avec des exemples illustratifs.
Afficher plus
Publications associées (11)

Stochastic Zeroth-Order Optimisation Algorithms with Variance Reduction

Ahmad Ajalloeian

Introduction of optimisation problems in which the objective function is black box or obtaining the gradient is infeasible, has recently raised interest in zeroth-order optimisation methods. As an example finding adversarial examples for Deep Learning mode ...
2019

Analytic twists of modular forms and applications

Alexandre François Peyrot

We are interested in the study of non-correlation of Fourier coefficients of Maass forms against a wide class of real analytic functions. In particular, the class of functions we are interested in should be thought of as some archimedean analogs of Frobeni ...
EPFL2017

Sequences with Minimal Time-Frequency Uncertainty

Martin Vetterli, Reza Parhizkar, Yann Barbotin

A central problem in signal processing and communications is to design signals that are compact both in time and frequency. Heisenberg's uncertainty principle states that a given function cannot be arbitrarily compact both in time and frequency, defining a ...
Elsevier2015
Afficher plus
Personnes associées (1)
Concepts associés (5)
Équation différentielle ordinaire
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Linear recurrence with constant coefficients
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1.
Suite définie par récurrence
En mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.