Théorie géométrique des groupesLa théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Cristal liquideUn cristal liquide est un état de la matière qui combine des propriétés d'un liquide ordinaire et celles d'un solide cristallisé. On exprime son état par le terme de « mésophase » ou « état mésomorphe » (du grec « de forme intermédiaire »). La nature de la mésophase diffère suivant la nature et la structure du mésogène, molécule à l'origine de la mésophase, ainsi que des conditions de température, de pression et de concentration. thumb|Rudolf Virchow.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Théorie de MieEn optique ondulatoire, la théorie de Mie, ou solution de Mie, est une solution particulière des équations de Maxwell décrivant la diffusion élastique – c'est-à-dire sans changement de longueur d'onde – d'une onde électromagnétique plane par une particule sphérique caractérisée par son diamètre et son indice de réfraction complexe. Elle tire son nom du physicien allemand Gustav Mie, qui la décrivit en détail en 1908. Le travail de son prédécesseur Ludvig Lorenz est aujourd'hui reconnu comme « empiriquement équivalent » et l'on parle parfois de la théorie de Lorenz-Mie.
Negative-index metamaterialNegative-index metamaterial or negative-index material (NIM) is a metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. NIMs are constructed of periodic basic parts called unit cells, which are usually significantly smaller than the wavelength of the externally applied electromagnetic radiation. The unit cells of the first experimentally investigated NIMs were constructed from circuit board material, or in other words, wires and dielectrics.
Amplitude de diffusionEn mécanique quantique, l'amplitude de diffusion est l'amplitude de probabilité qui intervient lorsqu'une onde sphérique sortante (objet ponctuel) est éclairée par une onde plane entrante, dans le cas d'un processus de diffusion à l'état stationnaire. Ce processus est décrit par la fonction d'onde suivante : où est l'onde plane incidente et transmise selon l'axe , avec le nombre d'onde, est l'onde sphérique sortante diffusée. On a les termes : le vecteur de position, l'angle de diffusion, et l'amplitude de diffusion, dont la dimension est une longueur.
Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Metamaterial antennaMetamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized (electrically small) antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.
Gradientvignette|Chaque champ scalaire est représenté par un dégradé (blanc = valeur basse, noir = valeur haute). Chaque gradient est un champ vectoriel, représenté par des flèches bleues ; chacune pointe dans la direction où le champ scalaire croît le plus vite. vignette|La fonction à deux variables f(x, y) = xe−(x2 + y2) correspond à la température (bleu = valeur basse = froid, rouge = valeur haute = chaud). Le gradient de f est un champ vectoriel, représenté par les flèches bleues ; chacune pointe dans la direction où la température croît le plus vite.