vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition. Mais cette structure se retrouve aussi dans de nombreux autres domaines, notamment en algèbre, ce qui en fait une notion centrale des mathématiques modernes. La structure de groupe possède un lien étroit avec la notion de symétrie. Un groupe de symétrie décrit les symétries d'une forme géométrique : il consiste en un ensemble de transformations géométriques qui laissent l'objet invariant, l'opération consistant à composer de telles transformations, c'est-à-dire à les appliquer l'une après l'autre. De tels groupes de symétrie, en particulier les groupes de Lie continus, jouent un rôle important dans de nombreuses sciences. Ces derniers, par exemple, sont les groupes de symétries utilisés dans le modèle standard de la physique des particules. Les groupes généraux linéaires sont, quant à eux, utilisés en physique fondamentale, afin de comprendre les lois de la relativité restreinte et les phénomènes liés à la symétrie des molécules en chimie. Le concept de groupe fit son apparition dans l'étude des équations polynomiales. En effet, c'est Évariste Galois qui, durant les années 1830, utilisa pour la première fois le terme « groupe » dans un sens technique similaire à ce qui est utilisé de nos jours, faisant de lui un des fondateurs de la théorie des groupes. À la suite de contributions d'autres domaines des mathématiques, comme la théorie des nombres et la géométrie, la notion de groupe fut généralisée et plus fermement établie autour des années 1870. La théorie des groupes moderne, une branche des mathématiques toujours active, se concentre donc sur la structure de groupes abstraits, indépendamment de leur utilisation extra-mathématique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.