vignette|Les manipulations possibles du Rubik's Cube forment un groupe.
En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique.
La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition. Mais cette structure se retrouve aussi dans de nombreux autres domaines, notamment en algèbre, ce qui en fait une notion centrale des mathématiques modernes.
La structure de groupe possède un lien étroit avec la notion de symétrie. Un groupe de symétrie décrit les symétries d'une forme géométrique : il consiste en un ensemble de transformations géométriques qui laissent l'objet invariant, l'opération consistant à composer de telles transformations, c'est-à-dire à les appliquer l'une après l'autre. De tels groupes de symétrie, en particulier les groupes de Lie continus, jouent un rôle important dans de nombreuses sciences. Ces derniers, par exemple, sont les groupes de symétries utilisés dans le modèle standard de la physique des particules. Les groupes généraux linéaires sont, quant à eux, utilisés en physique fondamentale, afin de comprendre les lois de la relativité restreinte et les phénomènes liés à la symétrie des molécules en chimie.
Le concept de groupe fit son apparition dans l'étude des équations polynomiales. En effet, c'est Évariste Galois qui, durant les années 1830, utilisa pour la première fois le terme « groupe » dans un sens technique similaire à ce qui est utilisé de nos jours, faisant de lui un des fondateurs de la théorie des groupes. À la suite de contributions d'autres domaines des mathématiques, comme la théorie des nombres et la géométrie, la notion de groupe fut généralisée et plus fermement établie autour des années 1870.
La théorie des groupes moderne, une branche des mathématiques toujours active, se concentre donc sur la structure de groupes abstraits, indépendamment de leur utilisation extra-mathématique.